Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Analysis of the spatial variation in the abundance of lesser rheas using density surface models

Milagros Antún A D , Ricardo Baldi A B , Lucas M. Bandieri A and Romina L. D’ Agostino C
+ Author Affiliations
- Author Affiliations

A Instituto Patagónico para el Estudio de los Ecosistemas Continentales, CONICET, Boulevard Brown 2915, Puerto Madryn 9120, Chubut, Argentina.

B Programa Estepa Patagónica y Andina, Wildlife Conservation Society, Amenábar 1595, Buenos Aires, Argentina.

C Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, Puerto Madryn 9120, Chubut, Argentina.

D Corresponding author. Email: antunmilagros@gmail.com

Wildlife Research 45(1) 47-54 https://doi.org/10.1071/WR16233
Submitted: 30 December 2016  Accepted: 9 December 2017   Published: 29 March 2018

Abstract

Context: The study of the spatial variation in abundance of wild populations and the identification of factors explaining the observed patterns are key both to understand aspects of basic ecology and the effects of human activities. This is usually difficult to evaluate for low-density and widely distributed species, such as the lesser rhea (Rhea pennata pennata), an endemic bird from South America. Recent advances in spatial modelling such as the density surface models (DSM) combine distance-sampling procedures with modelling techniques to produce maps of spatial variation in abundance, and its relationship with predictive variables.

Aims: We aimed to analyse the spatial distribution and abundance of lesser rhea, and the variables that affect its abundance in Península Valdés (PV) Argentine Patagonia.

Methods: We conducted 338.4 km of ground surveys of lesser rheas in PV during the end of the Austral summer of 2015. Spatial models were constructed using DSM. Ecological and human-related variables were included in the models to account for variation in the abundance of animals at 4-km2 spatial resolution.

Key results: We estimated an overall density of 0.44 birds km–2 (CV = 32%) for the prediction area of 3320 km2. High values of normalised difference vegetation index, a correlate of plant productivity, were associated with increased numbers of lesser rheas. The location of ranch buildings, indicators of human presence, had a strong negative effect on lesser rheas, although their abundance increased at high sheep stocking rates.

Conclusions: As reported by previous studies in different sites, the abundance of lesser rheas in our study area was low. The use of DSM allowed a detailed examination of the spatial variation, as well as the variables involved and the uncertainty of the prediction.

Implications: The use of DSM techniques can be a useful tool for conservation planning and monitoring. Spatial, high-resolution data combined with knowledge on the factors affecting the number of animals are crucial to target specific conservation actions and monitor their results, and should allow government agencies to make better decisions concerning conservation-oriented management.

Additional keywords: anthropogenic impacts, habitat selection, modeling, spatial ecology, vertebrates, Rhea pennata pennata.


References

Baldi, R., Pirronitto, A., Burgi, M. V., and Antún, M. (2015). Abundance estimates of the lesser rhea Rhea pennata pennata in the Argentine Patagonia: conservation implications. Frontiers in Ecology and Evolution 3, 1–8.
Abundance estimates of the lesser rhea Rhea pennata pennata in the Argentine Patagonia: conservation implications.Crossref | GoogleScholarGoogle Scholar |

Barri, F. R., Martella, M. B., and Navarro, J. L. (2008). Effects of hunting, egg harvest and livestock grazing intensities on density and reproductive success of lesser rhea Rhea pennata pennata in Patagonia: implications for conservation. Oryx 42, 607–610.
Effects of hunting, egg harvest and livestock grazing intensities on density and reproductive success of lesser rhea Rhea pennata pennata in Patagonia: implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Barros, V. R., and Rivero, M. M. (1982). ‘Mapas de Probabilidad de Precipitación de la Provincia de Chubut.’ (Subsecretaría de Estado de Ciencia Y Tecnología, Consejo Nacional de Investigaciones Científicas Y Técnicas, Centro Nacional Patagónico: Puerto Madryn, Argentina.)

Beeskow, A. M., Del Valle, H. F., and Rostagno, C. M. (1987). ‘Los Sistemas Fisiográficos de la Región Árida y Semiárida de la Provincia de Chubut.’ Publicación Especial. (Secretaría de Ciencia Y Técnica: Bariloche, Argentina.)

Beeskow, A.M., Elissalde, N.O., and Rostagno, C.M. (1995). Ecosystem change associated with grazing intensity on the Punta Ninfas rangelands of Patagonia, Argentina. Journal of Range Management 48, 517–522.

Bellis, L. M., Martella, M. B., Navarro, J. L., and Vignolo, P. E. (1999). Experience of release of yearlings of greater rhea reproduced artificially. In ‘Proceedings of the VI Neotropical Ornithological Congress’. Neotropical Ornithological Society: Monterrey, Mexico. pp. 55–56.

Bellis, L. M., Martella, M. B., Navarro, J. L., and Vignolo, P. E. (2004). Home range of greater and lesser rhea in Argentina: relevance to conservation. Biodiversity and Conservation 13, 2589–2598.
Home range of greater and lesser rhea in Argentina: relevance to conservation.Crossref | GoogleScholarGoogle Scholar |

Bertiller, M. B., Beeskow, A. M., and Irisarri, M. P. (1980). ‘Caracteres Fisonómicos y Florísticos de las Unidades de Vegetación del Chubut.’ (Conicet–Inta–OEA: Puerto Madryn, Argentina.)

BirdLife International (2016). Rhea pennata. The IUCN Red List of Threatened Species 2016. , .
Rhea pennata.Crossref | GoogleScholarGoogle Scholar |

Bonino, N., Bonvisutto, G., Pelliza Sbriller, A., and Somlo, R. (1986). Hábitos alimentarios de los herbívoros en la zona central de área ecológica sierras y mesetas occidentales de la Patagonia. Revista Argentina de Producción Animal , 275–287.

Buckland, S. T., Anderson, D. R., Burnham, K. P., and Laake, J. L. (1993). ‘Distance Sampling: Estimating Abundance of Biological Populations.’ (Chapman & Hall: London.)

Buckland, S. T., Anderson, D., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling: Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford, UK.)

Buckland, S. T., Burt, M. L., Rexstad, E. A., Mellor, M., Williams, A. E., and Woodward, R. (2012). Aerial surveys of seabirds: the advent of digital methods. Journal of Applied Ecology 49, 960–967.
Aerial surveys of seabirds: the advent of digital methods.Crossref | GoogleScholarGoogle Scholar |

Burnham, K., and Anderson, D. (1998). ‘Model Selection and Multimodel Inference.’ (Springer: New York.)

De Lucca, E. R. (1996). Censos de choiques (Pterocnemia p. pennata) en el sur patagónico. El Hornero 14, 74–77.

Del Hoyo, J., Elliot, A., and Sargatal, J. (1992). ‘Handbook of the Birds of the World.’ 1, 1992. (Lynx Editions: Barcelona, Spain.)

Fischer, J., and Lindenmayer, D. B. (2006). Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112, 473–480.
Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes.Crossref | GoogleScholarGoogle Scholar |

Funes, M. C., Rosauer, M., Aldao, G. S., Monsalvo, O. B., and Novaro, A. J. (2000). ‘Manejo y Conservación del Choique en la Patagonia: Análisis de los Relevamientos Poblacionales.’ (C.E.A.N, Dirección General de Supervisión Técnico Administrativa, Subsecretaria de Producción Y Recursos Naturales, Secretaría de Estado de Producción Y Turismo: Río Negro, Argentina.)

Gavirati, M. (2003). ¿Un negocio liviano? La importancia del comercio de plumas de avestruz para la Colonia Galesa, la Patagonia y Argentina. Pueblos Y Fronteras 4, 4–16.

Harihar, A., Pandav, B., and Macmillan, D.C. (2014). Identifying realistic recovery targets and conservation actions for tigers in a human-dominated landscape using spatially explicit densities of wild prey and their determinants. Diversity and Distributions 20, 567–578.
Identifying realistic recovery targets and conservation actions for tigers in a human-dominated landscape using spatially explicit densities of wild prey and their determinants.Crossref | GoogleScholarGoogle Scholar |

Hedley, S. L., and Buckland, S. T. (2004). Spatial models for line transect sampling. Journal of Agricultural, Biological and Environmental Statistics 9, 181–199.

Herr, H., Scheidat, M., Lehnert, K., and Siebert, U. (2009). Seals at sea: modelling seal distribution in the German bight based on aerial survey data. Marine Biology 156, 811–820.
Seals at sea: modelling seal distribution in the German bight based on aerial survey data.Crossref | GoogleScholarGoogle Scholar |

Katsanevakis, S. (2007). Density surface modelling with line transect sampling as a tool for abundance estimation of marine benthic species: the Pinna nobilis example in a marine lake. Marine Biology 152, 77–85.
Density surface modelling with line transect sampling as a tool for abundance estimation of marine benthic species: the Pinna nobilis example in a marine lake.Crossref | GoogleScholarGoogle Scholar |

Katsanevakis, S., and Thessalou-Legaki, M. (2009). Spatial distribution, abundance and habitat use of the protected fan mussel Pinna nobilis in Souda Bay, Crete. Aquatic Biology 8, 45–54.
Spatial distribution, abundance and habitat use of the protected fan mussel Pinna nobilis in Souda Bay, Crete.Crossref | GoogleScholarGoogle Scholar |

Laake, J. L., Buckland, S. T., Anderson, D. R., and Burnham, K. P. (1993). ‘DISTANCE User’s Guide.’ (Colorado State University: Fort Collins, CO.)

León, León, León, León, León, (1998). Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8, 125–144.

Lennon, J. J. (1999). Resource selection functions: taking space seriously? Trends in Ecology & Evolution 14, 399–400.
Resource selection functions: taking space seriously?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbgvVyntQ%3D%3D&md5=4557dcedecce0f2fe9ef5ea767f1aeecCAS |

Marra, G., and Wood, S. N. (2011). Practical variable selection for generalized additive models. Computational Statistics & Data Analysis 55, 2372–2387.
Practical variable selection for generalized additive models.Crossref | GoogleScholarGoogle Scholar |

Miller, D. L. (2016a). Distance: a simple way to fit detection functions to distance sampling data for both line and point transects. R package version 0.7.1. https://cran.r-project.org/web/packages/Distance/index.html verified 15 March 2018.

Miller, D. L. (2016b). Example dsm analysis: pantropical dolphins in the Gulf of Mexico. Distance sampling web (August). Available at http://distancesampling.org/R/vignettes/mexico-analysis.html [verified 15 March 2018].

Miller, D. L., Burt, M. L., Rexstad, E. A., and Thomas, L. (2013). Spatial models for distance sampling data: recent developments and future directions. Methods in Ecology and Evolution 4, 1001–1010.
Spatial models for distance sampling data: recent developments and future directions.Crossref | GoogleScholarGoogle Scholar |

Nabte, M. J. (2010). Desarrollo de criterios ecológicos para la conservación de mamíferos terrestres en Península Valdés. PhD Thesis, Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina.

Nabte, M. J., Marino, A. I., Rodríguez, M. V., Monjeau, A., and Saba, S. L. (2013). Range management affects native ungulate populations in Península Valdés, a World Natural Heritage. PLoS One 8, e55655.
Range management affects native ungulate populations in Península Valdés, a World Natural Heritage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVOku70%3D&md5=62e298b187efd14a1f98428ffe560d6dCAS |

Novaro, A. J., Funes, M. C., and Susan Walker, R. (2000). Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biological Conservation 92, 25–33.
Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia.Crossref | GoogleScholarGoogle Scholar |

Pedrana, J., Bustamante, J., Travaini, A., Rodrguez, A., Zapata, S., Zann Martnez, J. I., and Procopio, D. (2011). Environmental factors influencing the distribution of the lesser rhea (Rhea pennata pennata) in southern Patagonia. Emu 111, 350–359.
Environmental factors influencing the distribution of the lesser rhea (Rhea pennata pennata) in southern Patagonia.Crossref | GoogleScholarGoogle Scholar |

Pullin, A. S. (2002). Conservation Biology 362, .
Crossref | GoogleScholarGoogle Scholar |

QGIS Development Team. (2016). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at http://qgis.osgeo.org.

R Development Core Team. (2015). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing, Vienna.)

Reiss, P. T., and Ogden, R. T. (2009). Smoothing parameter selection for a class of semiparametric linear models. Journal of the Royal Statistical Society. Series B, Statistical Methodology 71, 505–523.
Smoothing parameter selection for a class of semiparametric linear models.Crossref | GoogleScholarGoogle Scholar |

Rivas, L. F., Novaro, A. J., Funes, M. C., and Walker, R. S. (2015). Rapid assessment of distribution of wildlife and human activities for prioritizing conservation actions in a Patagonian landscape. PLoS One 10, e0127265.
Rapid assessment of distribution of wildlife and human activities for prioritizing conservation actions in a Patagonian landscape.Crossref | GoogleScholarGoogle Scholar |

Schroeder, N. M., Matteucci, S. D., Moreno, P. G., Gregorio, P., Ovejero, R., Taraborelli, P., and Carmanchahi, P. D. (2014). Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models. PLoS One 9, .
Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models.Crossref | GoogleScholarGoogle Scholar |

Somlo, R. (1997). ‘Atlas Dietario de los Herbívoros Patagónicos.’ (Prodesar–INTA–GTZ: Bariloche, Argentina.)

Soriano, A., and Movia, C. P. (1986). Erosión y desertización en la Patagonia. Interciencia 11, 77–83.

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar |

Ver Hoef, J. M. (2012). Who invented the delta method? The American Statistician 66, 124–127.
Who invented the delta method?Crossref | GoogleScholarGoogle Scholar |

Winiarski, K. J., Miller, D. L., Paton, P. W. C., and McWilliams, S. R. (2013). Spatially explicit model of wintering common loons: conservation implications. Marine Ecology Progress Series 492, 273–283.
Spatially explicit model of wintering common loons: conservation implications.Crossref | GoogleScholarGoogle Scholar |

Winiarski, K. J., Burt, M. L., Rexstad, E., Miller, D. L., Trocki, C. L., Paton, P. W. C., and McWilliams, S. R. (2014). Integrating aerial and ship surveys of marine birds into a combined density surface model: a case study of wintering common loons. The Condor 116, 149–161.
Integrating aerial and ship surveys of marine birds into a combined density surface model: a case study of wintering common loons.Crossref | GoogleScholarGoogle Scholar |

Wood, S. N. (2006). ‘Generalized Additive Models: an Introduction with R.’ (Chapman & Hall/CRC: Florida.)

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society. Series B, Statistical Methodology 73, 3–36.
Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models.Crossref | GoogleScholarGoogle Scholar |