Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Estimating lizard population density: an empirical comparison between line-transect and capture–recapture methods

J. Ruiz de Infante Anton A , A. Rotger A , J. M. Igual A and G. Tavecchia A B
+ Author Affiliations
- Author Affiliations

A Population Ecology Group, IMEDEA (CSIC–UIB), c. M. Marques 21, 07190, Esporles, Spain.

B Corresponding author. Email: g.tavecchia@uib.es

Wildlife Research 40(7) 552-560 https://doi.org/10.1071/WR13127
Submitted: 19 February 2013  Accepted: 7 November 2013   Published: 18 December 2013

Abstract

Context: In most natural populations, exhaustive counts are not possible and estimates need to be derived from partial sampling by using analytical methods that account for biological processes, sampling errors and detection probability. The methods available have contrasting pitfalls and payoffs in relation to the assumptions made but are seldom contrasted on the same population.

Aims: We compared density estimates derived by different sampling methods. Despite the real density being unknown, the ‘soft’ validation of density estimates might help to better understand the possible pitfalls and payoffs of each method. This was done in three closed populations and with three different habitat typologies to disentangle the effects of different capture-detection processes to those introduced by the method itself.

Methods: We considered the problem of estimating population density of the endemic Balearic lizard, Podarcis lilfordi, in three island populations. We compared estimates derived by distance sampling (LT) in three types of habitat with those calculated from a simultaneous 3-day capture–mark–recapture study. Capture histories of marked individuals were used to estimate density using spatially explicit capture–recapture models (SECR) and a capture–mark–recapture model without spatial data (CMR). Moreover, we empirically assessed the influence of survey duration by extending the survey in the largest island to five occasions. The real population density was unknown and absolute accuracy of each method cannot be assessed; nevertheless, relative estimates might be informative.

Key results: LT estimates had the greatest coefficient of variation in vegetated habitats, corresponding to possible departures from model assumptions. SECR estimates differed among islands and were from 12% to 37% lower than those derived by LT but only in the largest islands with high and dense vegetation. CMR estimates depended on the number of occasions whereas SECR did not and showed lower variance. LT and SECR estimates showed differences across islets.

Conclusions: Line-transect and capture–recapture methods gave comparable results but the interaction between recapture processes and habitat types should be considered when inferring density to the whole area. We found density estimates between 1500 and 2500 individuals ha–1, being a higher value than those found for lizards in continental regions.

Implications: Pitfalls and payoffs of each method are discussed to optimise experimental design in estimating population density.

Additional keywords: detection, distance sampling, habitat, island, SECR.


References

Aars, J., Marques, T. A., Buckland, S. T., Andersen, M., Belikov, S., Boltunov, A., and Wiig, Ø. (2009). Estimating the Barents Sea polar bear subpopulation size. Marine Mammal Science 25, 35–52.
Estimating the Barents Sea polar bear subpopulation size.Crossref | GoogleScholarGoogle Scholar |

Anderson, D. R., Burnham, K. P., Lubow, B. C., Thomas, L., Corn, P. S., Medica, P. A., and Marlow, R. W. (2001). Field trials of line transect methods applied to estimation of desert tortoise abundance. The Journal of Wildlife Management 65, 583–597.
Field trials of line transect methods applied to estimation of desert tortoise abundance.Crossref | GoogleScholarGoogle Scholar |

Ballinger, R. E., and Congdon, J. D. (1981). Population ecology and life history strategy of a montane lizard (Sceloporus scalaris) in southeastern Arizona. Journal of Natural History 15, 213–222.
Population ecology and life history strategy of a montane lizard (Sceloporus scalaris) in southeastern Arizona.Crossref | GoogleScholarGoogle Scholar |

Borchers, D. L., and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64, 377–385.
Spatially explicit maximum likelihood methods for capture–recapture studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czhvVWlsA%3D%3D&md5=b70f01dfb06d21fb42ff425149466cf7CAS | 17970815PubMed |

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling: Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford.)

Buckley, L. B., and Jetz, W. (2007). Insularity and the determinants of lizard population density. Ecology Letters 10, 481–489.
Insularity and the determinants of lizard population density.Crossref | GoogleScholarGoogle Scholar | 17498147PubMed |

Burnham, K. P., and Anderson, D. R. (2001). Kullback–Leibler information as a basis for strong inference in ecological studies. Wildlife Research 28, 111–119.
Kullback–Leibler information as a basis for strong inference in ecological studies.Crossref | GoogleScholarGoogle Scholar |

Cassey, P., and Ussher, G. T. (1999). Estimating abundance of tuatara. Biological Conservation 88, 361–366.
Estimating abundance of tuatara.Crossref | GoogleScholarGoogle Scholar |

Choquet, R., Reboulet, A. M., Lebreton, J. D., Gimenez, O., and Pradel, R. (2005). ‘U-CARE 2.2 User’s Manual.’ (CEFE: Montpellier, France.) Available at http://www.cefe.cnrs.fr/biostatistiques-et-biologie-des-populations/logiciels [verified 19 November 2013].

Efford, M. G. (2004). Density estimation in live-trapping studies. Oikos 106, 598–610.
Density estimation in live-trapping studies.Crossref | GoogleScholarGoogle Scholar |

Efford, M. G. (2009). ‘DENSITY 5.0: software for spatially explicit capture–recapture.’ (Department of Zoology, University of Otago: Dunedin, New Zealand.) Available at http://www.otago.ac.nz/density [verified 26 September 2013].

Efford, M. G. (2010). ‘Spatially Explicit Capture–recapture in R, Version 1.4.’ (Department of Zoology, University of Otago: Dunedin, New Zealand.) Available at http://www.otago.ac.nz/density/ [verified 21 November 2013].

Efford, M. G. (2012). ‘Secr: Spatially Explicit Capture–recapture Models (version 2.3.2). R Package.’ Available at http://cran.r-project.org/web/packages/secr/index.html [verified 11 December 2013].

Efford, M. G., and Fewster, R. M. (2013). Estimating population size by spatially explicit capture–recapture. Oikos 122, 918–928.
Estimating population size by spatially explicit capture–recapture.Crossref | GoogleScholarGoogle Scholar |

Efford, M. G., Warburton, B, Coleman, M. C., and Barker, R. J. (2005). A field test of two methods for density estimation. Wildlife Society Bulletin 33, 731–738.
A field test of two methods for density estimation.Crossref | GoogleScholarGoogle Scholar |

Funk, W. C., Almeida-Reinoso, D., Nogales-Sornosa, F., and Bustamante, M. R. (2003). Monitoring population trends of Eleutherodactylus frogs. Journal of Herpetology 37, 245–256.
Monitoring population trends of Eleutherodactylus frogs.Crossref | GoogleScholarGoogle Scholar |

Germano, J. M., Sander, J. M., Henderson, R. W., and Powell, R. (2003). Herpetofaunal communities in Grenada: a comparison of altered sites, with an annotated checklist of Grenadian amphibians and reptiles. Caribbean Journal of Science 39, 68–76.

Hendriks, I. E., Deudero, S., and Tavecchia, G. (2012). Recapture probability underwater: predicting the detection of the threatened noble pen shell in seagrass meadows. Limnology and Oceanography, Methods 10, 824–831.
Recapture probability underwater: predicting the detection of the threatened noble pen shell in seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Iverson, J. B. (1978). The impact of feral cats and dogs on populations of the West Indian rock iguana, Cyclura carinata. Biological Conservation 14, 63–73.
The impact of feral cats and dogs on populations of the West Indian rock iguana, Cyclura carinata.Crossref | GoogleScholarGoogle Scholar |

Kacoliris, F. P., Berkunsky, I., and Williams, J. D. (2009). Methods for assessing population size in sand dune lizards (Liolaemus multimaculatus). Herpetologica 65, 219–226.
Methods for assessing population size in sand dune lizards (Liolaemus multimaculatus).Crossref | GoogleScholarGoogle Scholar |

Krebs, J.R., and Houston, A.I. (1989). Optimization in ecology. Ecological concepts , 309–338.

Krebs, C. J., Boonstra, R., Scott, G., Reid, D., Kenney, A.J., and Hofer, E. J. (2011). Density estimation for small mammals from livetrapping grids: rodents in northern Canada. Journal of Mammalogy 92, 974–981.
Density estimation for small mammals from livetrapping grids: rodents in northern Canada.Crossref | GoogleScholarGoogle Scholar |

Kwiatkowski, M. A., and Sullivan, B. K. (2002). Mating system structure and population density in a polygynous lizard, Sauromalus obesus (= ater). Behavioral Ecology 13, 201–208.
Mating system structure and population density in a polygynous lizard, Sauromalus obesus (= ater).Crossref | GoogleScholarGoogle Scholar |

MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: NJ.)

MacArthur, R. H., Diamond, J. M., and Karr, J. R. (1972). Density compensation in island faunas. Ecology 53, 330–342.
Density compensation in island faunas.Crossref | GoogleScholarGoogle Scholar |

Noss, A. J., Gardner, B., Maffei, L., Cuéllar, E., Montaño, R., Romero-Muñoz, A., Sollman, R., and O’Connell, A. F. (2012). v traps in the Kaa-Iya Del Gran Chaco landscape. Animal Conservation 15, 527–535.
v traps in the Kaa-Iya Del Gran Chaco landscape.Crossref | GoogleScholarGoogle Scholar |

Olesen, J. M., and Valido, A. (2003). Lizards as pollinators and seed dispersers: an island phenomenon. Trends in Ecology & Evolution 18, 177–181.
Lizards as pollinators and seed dispersers: an island phenomenon.Crossref | GoogleScholarGoogle Scholar |

Otis, D. L., Burham, K. P., White, G. C., and Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs 62, 3–135.

Pérez-Mellado, V. (1989). Estudio ecológico de la lagartija balear Podarcis lilfordi (Günther, 1874) en Menorca. Revista De Menorca 53, 455–511.

Pérez-Mellado, V. (1998). Podarcis lilfordi (Günther, 1874). In ‘Fauna Ibérica, Vol. 10. Reptiles’. pp. 272–282. (Museo Nacional de Ciencias Naturales, CSIC: Madrid.)

Pérez-Mellado, V., and Martínez-Solano, I. (2009). Podarcis lilfordi. ‘IUCN Red List of Threatened Species. Version 2012.2.’ Available at www.iucnredlist.org [verified November 2012].

Pérez-Mellado, V., Hernández-Estévez, J. A., García-Díez, T., Terrassa, B., Ramón, M. M., Castro, J., Picornell, A., Martín-Vallejo, J., and Brown, R. (2008). Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain). Amphibia-Reptilia 29, 49–60.
Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain).Crossref | GoogleScholarGoogle Scholar |

R Core Team (2012). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.) Available at http://www.R-project.org/ [verified November 2012].

Rees, S. G., Goodenough, A. E., Hart, A. G., and Stafford, R. (2011). Testing the effectiveness of capture mark recapture population estimation techniques using a computer simulation with known population size. Ecological Modelling 222, 3291–3294.
Testing the effectiveness of capture mark recapture population estimation techniques using a computer simulation with known population size.Crossref | GoogleScholarGoogle Scholar |

Reisinger, W. J., Stuart-Fox, D. M., and Erasmus, B. F. N. (2006). Habitat associations and conservation status of an endemic forest dwarf chameleon (Bradypodion sp.) from South Africa. Oryx 40, 183–188.
Habitat associations and conservation status of an endemic forest dwarf chameleon (Bradypodion sp.) from South Africa.Crossref | GoogleScholarGoogle Scholar |

Rodda, G. H. (2012). Statistical properties of techniques and validation. In ‘Reptile Biodiversity: Standard Methods for Inventory and Monitoring’. pp. 197–203. (University of California Press: Berkeley, CA.)

Rodda, G. H., and Campbell, E. W. (2002). Distance sampling of forest snakes and lizards. Herpetological Review 33, 271–274.

Sacchi, R., Scali, S., Pellitteri-Rosa, D., Pupin, F., Gentilli, A., Tettamanti, S., and Cavigioli, L. (2010). Photographic identification in reptiles: a matter of scales. Amphibia-Reptilia 31, 489–502.
Photographic identification in reptiles: a matter of scales.Crossref | GoogleScholarGoogle Scholar |

Salvador, A. (1986). Podarcis lilfordi (Günther, 1874) Balearen Eidechse. Handbuch Der Reptilien Und Amphibien Europas 2, 83–110.

Schwarz, C. J., and Anderson, A. N. (2001). Jolly–Seber models in MARK. In ‘MARK. A Gentle Introduction’. (Eds E. G. Cooch and G. C. White). pp. 12.1–12.52. Available at http://www.phidot.org/software/mark/docs/book/pdf/chap13.pdf [verified November 2012].

Seber, G. A. F. (2002). ‘The Estimation of Animal Abundance and Related Parameters.’ (Blackburn Press: Blackburn.)

Smolensky, N. L., and Fitzgerald, L. A. (2010). Distance sampling underestimates population densities of dune-dwelling lizards. Journal of Herpetology 44, 372–381.
Distance sampling underestimates population densities of dune-dwelling lizards.Crossref | GoogleScholarGoogle Scholar |

Sutherland, W. J. (2006). ‘Ecological Census Techniques.’ 2nd edn. (Cambridge University Press: Cambridge, UK.)

Tavecchia, G., Minguez, E., De León, A., Louzao, M., and Oro, D. (2008). Living close, doing differently: small-scale asynchrony in demography of two species of seabirds. Ecology 89, 77–85.
Living close, doing differently: small-scale asynchrony in demography of two species of seabirds.Crossref | GoogleScholarGoogle Scholar | 18376549PubMed |

Tavecchia, G., Besbeas, P., Coulson, T., Morgan, B. J. T., and Clutton-Brock, T. H. (2009). Estimating population size and hidden demographic parameters with state-space modeling. American Naturalist 173, 722–733.
Estimating population size and hidden demographic parameters with state-space modeling.Crossref | GoogleScholarGoogle Scholar | 19355815PubMed |

Tenan, S., Rotger, A., Igual, J. M., Moya, O., Royle, J.A., and Tavecchia, G. (2013). Population abundance, size structure and sex-ratio in an insular lizard. Ecological Modelling 267, 39–47.
Population abundance, size structure and sex-ratio in an insular lizard.Crossref | GoogleScholarGoogle Scholar |

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar | 20383262PubMed |

Turner, F. B. (1977). The dynamics of populations of squamates, crocodilians and rhynchocephalians. Biology of the Reptilia 7, 157–264.

Viada, C. (2006). ‘Libro Rojo De Los Vertebrados De Las Baleares.’ 3rd edn. (Conselleria de Medi Ambient, Govern de les Illes Balears: Palma de Mallorca, Illes Balears, Spain.)

Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002). ‘Analysis and Management of Animal Populations: Modelling, Estimation, and Decision Making.’ (Academic Press: Waltham, MA.)

Wilson, K. R., and Anderson, D. R. (1985). Evaluation of two density estimators of small mammals population size. Journal of Mammalogy 66, 13–21.
Evaluation of two density estimators of small mammals population size.Crossref | GoogleScholarGoogle Scholar |

Wright, S. J. (1980). Density compensation in island avifaunas. Oecologia 45, 385–389.
Density compensation in island avifaunas.Crossref | GoogleScholarGoogle Scholar |