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Variation in topography of intertidal seagrass beds across survey seasons  

Our results, as detailed in the main manuscript, demonstrated that the frequency distribution  

of the feeding trail direction determined in the main manuscript was consistent throughout the  

year. Furthermore, a correlation was observed between body axis direction and estimated tidal  

current direction, suggesting a correlation between the feeding trail direction and tidal current  

direction. Based on these findings, we inferred that the consistent distribution of feeding trail  

directions could be attributed to the year-round consistency of tidal current direction within  

the observation area.  

In general, the topographical changes (deposition and erosion) of coastal area are  

predominantly influenced by the tidal current and the wave’s energy and propagation  

direction (Xu et al. 2016). If there were no significant topographical changes in these sites, we  

could assume that the direction of the dominant tidal current flowing through these sites was  

relatively constant. Therefore, any topographical changes in the observation area were  

examined in this section.  

 The digital elevation models (DEMs) generated alongside the orthophotos described  

in the main manuscript were compared across survey seasons. For each of the four survey  

seasons, one representative DEM was selected for comparison. Three evaluation lines were  

set up within each site, as shown in Fig. S1. Since the accuracy of the DEM decreases outside  

of and distant from the GCPs (Goetz et al. 2018; Martínez-Carricondo et al. 2018), the  

evaluation lines were placed within the boundary set by the outermost Ground Control Points  

(GCPs). Elevation differences were calculated at evaluation points set every 10 m along the  

evaluation line. The evaluation point was set at 31 locations at Site A, and 90 locations at Site  

B.   
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Fig. S1. An example of the digital elevation model (DEM) with the evaluation line. The red  

point indicates the ground control point (GCP) used for georeferencing during the DEM  

generation process.  

  

We observed no significant topographic changes at these sites. The average elevation  

difference in root mean square error (RMSE) was 0.12 ± 0.04 m for Site A and 0.21 ± 0.14 m  

for Site B, with no noticeable change in specific direction over time (Table S1). The  

maximum difference of elevation at Site A was 0.18 m (RMSE) between May and November.  

The maximum difference of elevation at Site B was 0.37 m (RMSE) between May and  

September (Table S1). The equilibrium profiles of these sites indicated that the directions and  

locations of the shorelines at both Sites A and B, as well as the creek at Site B, remained  

stable (Fig. S2). At Site B, the elevation on the western side decreased across all the  

evaluation lines in May (Fig. S2). Excluding May, the maximum difference of elevation at  

Site B was 0.10 m (RMSE) between February and September (Table S1).  
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Fig. S2. Equilibrium profiles of the intertidal seagrass beds along the evaluation lines.  

  

Table S1. Elevation differences at evaluation points across survey seasons. Differences are  

represented both in RMSE (root mean square error) and ME (mean error). Evaluation points  

were set at 31 locations at Site A, and 90 locations at Site B.  

Site A RMSE (m) Site A ME (m) Site B RMSE (m) Site B ME (m) 

 Feb May Oct Nov  Feb May Oct Nov  Feb May Sep Dec  Feb May Sep Dec 

Feb  0.07 0.11 0.15 Feb  -0.03 0.08 0.13 Feb  0.32 0.10 0.07 Feb  -0.09 0.08 0.01 

May   0.13 0.18 May   0.11 0.16 May   0.37 0.33 May   0.16 0.10 

Oct    0.07 Oct    0.06 Sep    0.09 Sep    -0.06 

Nov     Nov     Dec     Dec   -  
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