Wildlife Research

Supplementary Material

Wildfire in rainforest margins is associated with variation in mammal diversity and habitat use

Rhiannon R. Bird^{A,B,*}, Rebeka R. Zsoldos^{B,C}, Martha V. Jimenez Sandoval^B, Shania J. Watson^B, and Annabel L. Smith^A

^A School of the Environment, University of Queensland, St Lucia, Qld 4072, Australia. Email:

annabel.smith@uq.edu.au

^B School of Agriculture and Food Sciences, University of Queensland, Gatton, Qld 4343, Australia. Email: rebeka.zsoldos@slu.se; jimenezs.martha@gmail.com; shania.watson@tr.qld.gov.au

^c Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Sundsvägen 16, Alnarp, Sweden.

*Correspondence to: Rhiannon R. Bird, School of the Environment, University of Queensland, St Lucia, Qld 4072, Australia. Email: rhiannon.bird@uq.edu.au

Figure S1. Pearson correlation coefficients between the main fire habitat category variable and environmental co-variates. We considered variables highly correlated if the correlation coefficient was $\geq |0.7|$.

Table S1. Nine mammal species, identified to species level, detected across rainforest

Scientific	Common name	Abbreviation	Individuals	EPBC Act	Native or
name			detected	classification	introduced
Antechinus	Brown	A.stu	34	Not listed	Native
stuartii	Antechinus				
Melomys	Fawn-footed	M.cer	142	Not listed	Native
cervinipes	Melomys				
Perameles	Long Nosed	P.nas	11	Not listed	Native
nasuta	Bandicoot				
Phascolarctos	Koala	P.cin	1	Endangered	Native
cinereus					
Rattus	Bush Rat	R.fuscipes	354	Not listed	Native
fuscipes					
Sus scrofa	Pig	S.scr	4	Not listed	Introduced
Thylogale	Red Legged	T.stigmatica	254	Not listed	Native
stigmatica	Pademelon	-			
Thylogale	Red Necked	T.the	80	Not listed	Native
thetis	Pademelon				
Trichosurus	Short Eared	T.can	40	Not listed	Native
caninus	Brushtailed				
	Possum				

margins in South East Queensland, Australia.

Abbreviations refer to those used in Figure S1. Conservation status is from the *Environment*

Protection Biodiversity Conservation Act 1999.

Figure S2. Principal Components Analysis (PCA) of mammal community composition in fire affected rainforest margins of South East Queensland, Australia. (a) The proportion of variance explained by each component; (b) Community dissimilarity among sites in three fire-habitat categories, represented by Component 1 (58.17% variance explained) and Component 2 (37.60% variance explained). A PCA bi-plot (Fig. S3) indicated that *Thylogale stigmatica* was associated with PC1 while *Melomys cervinipes* and *Rattus fuscipes* were associated with PC2.

Figure S3. Bi-plot of Principal Components Analysis (PCA) from a community of small mammals across in rainforest margins in sSouth East Queensland, Australia. Component 1 was influenced by *Thylogale stigmatica* whereas Component 2 was influenced by *Rattus fuscipes* and *Melomys cervinipes* (see Table S1 for species name abbreviations).

Table S2. Models of mammal community composition represented by Principal Component

 2 (PCA shown in Fig. S1), ranked by AICc.

Models	K	AICc	ΔAICc	AICcWt	Cum.Wt	Log L.
Null	2	212.18	0.00	0.57	0.57	-103.79
FHC * Midstorey		213.68	1.51	0.27	0.83	-96.11
FHC	4	216.11	3.93	0.08	0.91	-102.94
FHC + Understorey	5	218.69	6.51	0.02	0.94	-102.58
FHC + Distance to Path	5	219.25	7.07	0.02	0.95	-102.86
FHC + Elevation	5	219.30	7.12	0.02	0.97	-102.88
FHC + Distance to	5	219.36	7.18	0.02	0.98	-102.91
Rainforest Boundary						
FHC + Distance to Road		219.40	7.23	0.02	1.00	-102.94

The null model was the first-ranked model, while the second-ranked model (Δ AICc < 2) included an interaction between fire-habitat category and midstorey. For PC1, no models were ranked within Δ AICc < 2 relative to the null model. K, number of parameters; AICc, second order Akaike Information Criterion; Δ AICc, change in AICc; AICc Wt, AICc weight, Cum.Wt, Cumulative AICc weight, Log L., log likelihood of model given the data.

Figure S4. Estimated effect (\pm 95% confidence interval) of fire-habitat category and midstorey vegetation on small mammal community composition (represented by Principal Component 2) from rainforest margins of South East Queensland, Australia. Results show estimates from the second-ranked model (Δ AIC< 2 relative to first-ranked null model) which included an interaction between fire-habitat category (unburnt rainforest, burnt rainforest and burnt sclerophyll) and midstorey vegetation. No notable effects were found for Principal Component

Figure S5. Estimated probability of habitat use (±95% confidence interval) of (a) *Antechinus stuartii*, (b) *Rattus fuscipes*, (c) *Thylogale stigmatica*, (d) *Thylogale thetis* and (e) *Trichosurus caninus* in fire affected rainforest margins of South East Queensland, Australia. Asterisks indicate inability to calculate confidence intervals as that species was present at all sites that fire-habitat category. UBR, unburnt rainforest; BR, burnt rainforest; BS, burnt sclerophyll.

Table S3. Models examining the probability of movement for *Melomys cervinipes*, *Thylogale*stigmaticaand *Thylogale thetis* across rainforest margins in South East Queensland,Australia, ranked by AICc.

Species	Models	K	AICc	ΔAICc	AICcWt	Cum.Wt	Log L.
Melomys cervinipes	Null	2	199.38	0.00	0.52	0.52	-97.65
	FHC * Elevation	7	200.48	1.10	0.30	0.81	-92.82
	FHC	4	203.52	4.14	0.07	0.88	-97.61
	FHC + Midstorey	7	204.82	5.44	0.03	0.91	-94.99
	FHC + Distance to Path	5	205.38	6.00	0.03	0.94	-97.47
	FHC + Distance to Road	5	205.40	6.02	0.03	0.96	-97.48
	FHC * Distance to	7	205.46	6.08	0.02	0.99	-95.31
	Rainforest Boundary						
	FHC + Understorey	6	207.04	7.66	0.01	1.00	-97.20
Thylogale stigmatica	Null	2	81.85	0.00	0.60	0.60	-38.90
	FHC	4	84.86	3.02	0.13	0.73	-38.35
	FHC + Distance to Path	5	86.00	4.15	0.08	0.81	-37.88
	FHC + Distance to	5	86.81	4.77	0.06	0.86	-38.19
	Rainforest Boundary						
	FHC + Distance to Road	5	86.93	5.08	0.05	0.91	-38.34
	FHC + Elevation	5	86.94	5.10	0.05	0.96	-38.35
	FHC + Understorey	6	87.16	5.31	0.04	1.00	-37.41
Thylogale thetis	Null	2	29.12	0.00	0.67	0.67	-12.47
	FHC	4	32.29	3.18	0.14	0.81	-11.85
	FHC + Distance to Road	5	33.24	4.12	0.09	0.90	-11.16
	FHC + Distance to Rainforest Boundary	5	34.00	4.88	0.06	0.96	-11.54
	FHC + Path	5	34.60	5.49	0.04	1.00	-11.85

Each species was modelled as a function of fire-habitat category (FHC) and environmental

co-variates. The null model was first ranked for all three species, while two species with models ranked higher than the null are shown in the main document (Table 2). For *Melomys cervinipes*, there was one model ranked within $\Delta AICc < 2$ relative to the null model (Fig. S5). K, number of parameters; AICc, second order Akaike Information Criterion; $\Delta AICc$, change in AICc; AICc Wt, AICc weight, Cum.Wt, Cumulative AICc weight, Log L., log likelihood of model given the data

Figure S6. Estimated probability of movement ($\pm 95\%$ confidence interval) of *Melomys cervinipes* in fire affected rainforest margins of South East Queensland, Australia. The top-ranked model was the null model (Table S3), while the second ranked model shown here ($\Delta AICc = 1.10$, relative to the null model) included an interaction between fire-habitat category and elevation: (a) unburnt rainforest (b) burnt rainforest (c) burnt sclerophyll.