Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

VORTEX: a computer simulation model for population viability analysis

RC Lacy

Wildlife Research 20(1) 45 - 65
Published: 1993

Abstract

Population Viability Analysis (PVA) is the estimation of extinction probabilities by analyses that incorporate identifiable threats to population survival into models of the extinction process. Extrinsic forces, such as habitat loss, over-harvesting, and competition or predation by introduced species, often lead to population decline. Although the traditional methods of wildlife ecology can reveal such deterministic trends, random fluctuations that increase as populations become smaller can lead to extinction even of populations that have, on average, positive population growth when below carrying capacity. Computer simulation modelling provides a tool for exploring the viability of populations subjected to many complex, interacting deterministic and random processes. One such simulation model, VORTEX, has been used extensively by the Captive Breeding Specialist Group (Species Survival Commission, IUCN), by wildlife agencies, and by university classes. The algorithms, structure, assumptions and applications of VORTEX are described in this paper. VORTEX models population processes as discrete, sequential events, with probabilistic outcomes. VORTEX simulates birth and death processes and the transmission of genes through the generations by generating random numbers to determine whether each animal lives or dies, to determine the number of progeny produced by each female each year, and to determine which of the two alleles at a genetic locus are transmitted from each parent to each offspring. Fecundity is assumed to be independent of age after an animal reaches reproductive age. Mortality rates are specified for each pre-reproductive age-sex class and for reproductive-age animals. Inbreeding depression is modelled as a decrease in viability in inbred animals. The user has the option of modelling density dependence in reproductive rates. As a simple model of density dependence in survival, a carrying capacity is imposed by a probabilistic truncation of each age class if the population size exceeds the specified carrying capacity. VORTEX can model linear trends in the carrying capacity. VORTEX models environmental variation by sampling birth rates, death rates, and the carrying capacity from binomial or normal distributions. Catastrophes are modelled as sporadic random events that reduce survival and reproduction for one year. VORTEX also allows the user to supplement or harvest the population, and multiple subpopulations can be tracked, with user-specified migration among the units. VORTEX outputs summary statistics on population growth rates, the probability of population extinction, the time to extinction, and the mean size and genetic variation in extant populations. VORTEX necessarily makes many assumptions. The model it incorporates is most applicable to species with low fecundity and long lifespans, such as mammals, birds and reptiles. It integrates the interacting effects of many of the deterministic and stochastic processes that have an impact on the viability of small populations, providing opportunity for more complete analysis than is possible by other techniques. PVA by simulation modelling is an important tool for identifying populations at risk of extinction, determining the urgency of action, and evaluating options for management.

https://doi.org/10.1071/WR9930045

© CSIRO 1993

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions

View Altmetrics