Turning ghosts into dragons: improving camera monitoring outcomes for a cryptic low-density Komodo dragon population in eastern Indonesia
Deni Purwandana A , Achmad Ariefiandy A , Muhammad Azmi A , Sanggar A. Nasu A ,A Komodo Survival Program, Jl. Karang Sari Blok G, No. 10, Denpasar 80117, Bali, Indonesia.
B Balai Besar Konservasi Sumber Daya Alam Nusa Tenggara Timur, Jl. SK Lerik kelapa lima, Kupang 85228, NTT, Indonesia.
C Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, Vic. 3220, Australia.
D Corresponding author. Email: t.jessop@deakin.edu.au
Wildlife Research 49(4) 295-302 https://doi.org/10.1071/WR21057
Submitted: 25 March 2021 Accepted: 13 July 2021 Published: 16 December 2021
Journal Compilation © CSIRO 2022 Open Access CC BY
Abstract
Context: Detection probability is a key attribute influencing population-level wildlife estimates necessary for conservation inference. Increasingly, camera traps are used to monitor threatened reptile populations and communities. Komodo dragon (Varanus komodoensis) populations have been previously monitored using camera traps; however, considerations for improving detection probability estimates for very low-density populations have not been well investigated.
Aims: Here we compare the effects of baited versus non-baited camera monitoring protocols to influence Komodo dragon detection and occupancy estimates alongside monitoring survey design and cost considerations for ongoing population monitoring within the Wae Wuul Nature Reserve on Flores Island, Indonesia.
Methods: Twenty-six camera monitoring stations (CMS) were deployed throughout the study area with a minimum of 400 m among CMS to achieve independent sampling units. Each CMS was randomly assigned as a baited or non-baited camera monitoring station and deployed for 6 or 30 daily sampling events.
Key results: Baited camera monitoring produced higher site occupancy estimates with reduced variance. Komodo dragon detection probability estimates were 0.15 ± 0.092–0.22 (95% CI), 0.01 ± 0.001–0.03, and 0.03 ± 0.01–0.04 for baited (6 daily survey sampling events), unbaited (6 daily survey sampling events) and long-unbaited (30 daily survey sampling events) sampling durations respectively. Additionally, the provision of baited lures at cameras had additional benefits for Komodo detection, survey design and sampling effort costs.
Conclusions: Our study indicated that baited cameras provide the most effective monitoring method to survey low-density Komodo dragon populations in protected areas on Flores.
Implications: We believe our monitoring approach now lends itself to evaluating population responses to ecological and anthropogenic factors, hence informing conservation efforts in this nature reserve.
Keywords: population monitoring, effective sampling, protected areas, apex predator, reptiles, Varanus komodoensis.
References
Adams, C. S., Ryberg, W. A., Hibbitts, T. J., Pierce, B. L., Pierce, J. B., and Rudolph, D. C. (2017). Evaluating effectiveness and cost of time-lapse triggered camera trapping techniques to detect terrestrial squamate diversity. Herpetological Review 48, 44–48.Ariefiandy, A., Purwandana, D., Coulson, G., Forsyth, D. M., and Jessop, T. S. (2011). Monitoring the primary prey of the Komodo dragon: distance sampling or faecal counts? Wildlife Biology 19, 126–137.
Ariefiandy, A., Purwandana, D., Seno, A., Ciofi, C., and Jessop, T. S. (2013). Can camera traps monitor Komodo dragons a large ectothermic predator? PLoS One 8, e58800.
| Can camera traps monitor Komodo dragons a large ectothermic predator?Crossref | GoogleScholarGoogle Scholar | 23527027PubMed |
Ariefiandy, A., Purwandana, D., Seno, A., Chrismiawati, M., Ciofi, C., and Jessop, T. S. (2014). Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation. Biodiversity and Conservation 23, 2473–2490.
| Evaluation of three field monitoring-density estimation protocols and their relevance to Komodo dragon conservation.Crossref | GoogleScholarGoogle Scholar |
Ariefiandy, A., Purwandana, D., Natali, C., Imansyah, M., Surahman, M., Jessop, T., and Ciofi, C. (2015). Conservation of Komodo dragons Varanus komodoensis in the Wae Wuul nature reserve, Flores, Indonesia: a multidisciplinary approach. International Zoo Yearbook 49, 67–80.
| Conservation of Komodo dragons Varanus komodoensis in the Wae Wuul nature reserve, Flores, Indonesia: a multidisciplinary approach.Crossref | GoogleScholarGoogle Scholar |
Ariefiandy, A., Forsyth, D. M., Purwandana, D., Imansyah, J., Ciofi, C., Rudiharto, H., Seno, A., and Jessop, T. S. (2016). Temporal and spatial dynamics of insular Rusa deer and wild pig populations in Komodo National Park. Journal of Mammalogy 97, 1652–1662.
| Temporal and spatial dynamics of insular Rusa deer and wild pig populations in Komodo National Park.Crossref | GoogleScholarGoogle Scholar |
Ariefiandy, A., Purwandana, D., Ciofi, C., and Jessop, T. S. (2020). Komodo Survival Program: an NGO’s approach to assisting Komodo Dragon conservation and management. In ‘Strategies for Conservation Success in Herpetology’. (Eds S. C. Walls and K. M. O’Donnell.) (Society for the Study of Amphibians and Reptiles: University Heights, OH, USA.)
Ariefiandy, A., Purwandana, D., Azmi, M., Nasu, S. A., Mardani, J., Ciofi, C., and Jessop, T. S. (2021). Human activities associated with reduced Komodo dragon habitat use and range loss on Flores. Biodiversity and Conservation 30, 461–479.
Auffenberg, W. (1981). ‘The Behavioural Ecology of the Komodo Monitor.’ (Florida University Press: Gainesville, FL, USA.)
Austin, C., Tuft, K., Ramp, D., Cremona, T., and Webb, J. K. (2017). Bait preference for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus). Australian Mammalogy 39, 72–77.
| Bait preference for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus).Crossref | GoogleScholarGoogle Scholar |
Bull, J., Jessop, T. S., and Whiteley, M. (2010). Deathly drool: evolutionary and ecological basis of septic bacteria in Komodo dragon mouths. PLoS One 5, e11097.
| Deathly drool: evolutionary and ecological basis of septic bacteria in Komodo dragon mouths.Crossref | GoogleScholarGoogle Scholar | 20574514PubMed |
Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261–304.
| Multimodel inference: understanding AIC and BIC in model selection.Crossref | GoogleScholarGoogle Scholar |
Comer, S., Speldewinde, P., Tiller, C., Clausen, L., Pinder, J., Cowen, S., and Algar, D. (2018). Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occupancy models. Scientific Reports 8, 5335.
| Evaluating the efficacy of a landscape scale feral cat control program using camera traps and occupancy models.Crossref | GoogleScholarGoogle Scholar | 29593271PubMed |
Couturier, T., Cheylan, M., Bertolero, A., Astruc, G., and Besnard, A. (2013). Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann’s tortoise. The Journal of Wildlife Management 77, 454–462.
| Estimating abundance and population trends when detection is low and highly variable: a comparison of three methods for the Hermann’s tortoise.Crossref | GoogleScholarGoogle Scholar |
du Preez, B. D., Loveridge, A. J., and Macdonald, D. W. (2014). To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation 176, 153–161.
| To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density.Crossref | GoogleScholarGoogle Scholar |
Einoder, L. D., Southwell, D. M., Lahoz-Monfort, J. J., Gillespie, G. R., Fisher, A., and Wintle, B. A. (2018). Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS One 13, e0206373.
| Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods.Crossref | GoogleScholarGoogle Scholar | 30335847PubMed |
Ferreras, P., Díaz-Ruiz, F., and Monterroso, P. (2018). Improving mesocarnivore detectability with lures in camera-trapping studies. Wildlife Research 45, 505–517.
| Improving mesocarnivore detectability with lures in camera-trapping studies.Crossref | GoogleScholarGoogle Scholar |
Geyle, H. M., Stevens, M., Duffy, R., Greenwood, L., Nimmo, D. G., Sandow, D., Thomas, B., White, J., and Ritchie, E. G. (2020). Evaluation of camera placement for detection of free‐ranging carnivores; implications for assessing population changes. Ecological Solutions and Evidence 1, e12018.
| Evaluation of camera placement for detection of free‐ranging carnivores; implications for assessing population changes.Crossref | GoogleScholarGoogle Scholar |
Gittleman, J. L., and Harvey, P. H. (1982). Carnivore home-range size, metabolic needs and ecology. Behavioral Ecology and Sociobiology 10, 57–63.
| Carnivore home-range size, metabolic needs and ecology.Crossref | GoogleScholarGoogle Scholar |
Harlow, H. J., Purwandana, D., Jessop, T. S., and Phillips, J. A. (2010a). Body temperature and thermoregulation of Komodo dragons in the field. Journal of Thermal Biology 35, 338–347.
| Body temperature and thermoregulation of Komodo dragons in the field.Crossref | GoogleScholarGoogle Scholar |
Harlow, H. J., Purwandana, D., Jessop, T. S., and Phillips, J. A. (2010b). Size-related differences in the thermoregulatory habits of free-ranging Komodo dragons. International Journal of Zoology 2010, 921371.
| Size-related differences in the thermoregulatory habits of free-ranging Komodo dragons.Crossref | GoogleScholarGoogle Scholar |
Hilborn, R., Arcese, P., Borner, M., Hando, J., Hopcraft, G., Loibooki, M., Mduma, S., and Sinclair, A. R. (2006). Effective enforcement in a conservation area. Science 314, 1266.
| Effective enforcement in a conservation area.Crossref | GoogleScholarGoogle Scholar | 17124316PubMed |
Hines J. E. (2006 ). ‘Program PRESENCE.’ Available at http://www.mbrpwrc.usgs.gov/software/doc/presence/presence.html.
Hu, Y., Gillespie, G., and Jessop, T. S. (2019). Variable reptile responses to introduced predator control in southern Australia. Wildlife Research 46, 64–75.
| Variable reptile responses to introduced predator control in southern Australia.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Madsen, T., Sumner, J., Rudiharto, H., Phillips, J. A., and Ciofi, C. (2006). Maximum body size among insular Komodo dragon populations covaries with large prey density. Oikos 112, 422–429.
| Maximum body size among insular Komodo dragon populations covaries with large prey density.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Madsen, T., Ciofi, C., Imansyah, M. J., Purwandana, D., Rudiharto, H., Arifiandy, A., and Phillips, J. A. (2007). Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons. Biological Conservation 135, 247–255.
| Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Kearney, M. R., Moore, J. L., Lockwood, T., and Johnston, M. (2013). Evaluating and predicting risk to a large reptile (Varanus varius) from feral cat baiting protocols. Biological Invasions 15, 1653–1663.
| Evaluating and predicting risk to a large reptile (Varanus varius) from feral cat baiting protocols.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Ariefiandy, A., Purwandana, D., Ciofi, C., Imansyah, J., Benu, Y. J., Fordham, D. A., Forsyth, D. M., Mulder, R. A., and Phillips, B. L. (2018). Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proceedings of the Royal Society B. Biological Sciences 285, 20181829.
| Exploring mechanisms and origins of reduced dispersal in island Komodo dragons.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Ariefiandy, A., Purwandana, D., Benu, Y. J., Hyatt, M., and Letnic, M. (2019). Little to fear: largest lizard predator induces weak defense responses in ungulate prey. Behavioral Ecology 30, 624–636.
| Little to fear: largest lizard predator induces weak defense responses in ungulate prey.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Ariefiandy, A., Forsyth, D. M., Purwandana, D., White, C. R., Benu, Y. J., Madsen, T., Harlow, H. J., and Letnic, M. (2020). Komodo dragons are not ecological analogs of apex mammalian predators. Ecology 101, e02970.
| Komodo dragons are not ecological analogs of apex mammalian predators.Crossref | GoogleScholarGoogle Scholar | 31984486PubMed |
Jones, A. R., Jessop, T. S., Ariefiandy, A., Brook, B. W., Brown, S. C., Ciofi, C., Benu, Y. J., Purwandana, D., Sitorus, T., and Wigley, T. M. (2020). Identifying island safe havens to prevent the extinction of the World’s largest lizard from global warming. Ecology and Evolution 10, 10492–10507.
| Identifying island safe havens to prevent the extinction of the World’s largest lizard from global warming.Crossref | GoogleScholarGoogle Scholar | 33072275PubMed |
Kamil, P. I., Susianto, H., Purwandana, D., and Ariefiandy, A. (2019). Anthropomorphic and factual approaches in Komodo dragon conservation awareness program for elementary school students: initial study. Applied Environmental Education and Communication 19, 225–237.
Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A., and Hines, J. E. (2004). Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences of the United States of America 101, 4854–4858.
| Tigers and their prey: predicting carnivore densities from prey abundance.Crossref | GoogleScholarGoogle Scholar | 15041746PubMed |
Karanth, K. U., Gopalaswamy, A. M., Kumar, N. S., Vaidyanathan, S., Nichols, J. D., and Mackenzie, D. I. (2011). Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. Journal of Applied Ecology 48, 1048–1056.
| Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys.Crossref | GoogleScholarGoogle Scholar |
Kéry, M., and Schmidt, B. R. (2008). Imperfect detection and its consequences for monitoring for conservation. Community Ecology 9, 207–216.
| Imperfect detection and its consequences for monitoring for conservation.Crossref | GoogleScholarGoogle Scholar |
Kéry, M., Royle, J. A., and Schmid, H. (2005). Modeling avian abundance from replicated counts using binomial mixture models. Ecological Applications 15, 1450–1461.
| Modeling avian abundance from replicated counts using binomial mixture models.Crossref | GoogleScholarGoogle Scholar |
Laver, R. J., Purwandana, D., Ariefiandy, A., Imansyah, J., Forsyth, D., Ciofi, C., and Jessop, T. S. (2012). Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations. PLoS One 7, e45398.
| Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations.Crossref | GoogleScholarGoogle Scholar | 23028983PubMed |
Long, R. A., MacKay, P., Ray, J., and Zielinski, W. (2012) ‘Noninvasive survey methods for carnivores.’ (Island Press.)
MacKenzie, D. I., and Royle, J. A. (2005). Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42, 1105–1114.
| Designing occupancy studies: general advice and allocating survey effort.Crossref | GoogleScholarGoogle Scholar |
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
| Estimating site occupancy rates when detection probabilities are less than one.Crossref | GoogleScholarGoogle Scholar |
MacKenzie, D., Nichols, J., Royle, J., Pollock, K., Bailey, L., and Hines, J. (2006). ‘Occupancy estimation and modelling.’ (Academic Press: Burlington, MA, USA.)
Meek, P., Fleming, P., Ballard, G., Banks, P., Claridge, A., Sanderson, J., and Swann, D. (2014). Camera Trapping: Wildlife Management and Research. (CSIRO Publishing: Melbourne, Vic., Australia.)
Monk, K. A., De Fretes, Y., and Reksodiharjo-Lilley, G. (1997). ‘The Ecology of Nusa Tenggara and Maluku.’ (Oxford University Press: Oxford.)
Moore, H. A., Champney, J. L., Dunlop, J. A., Valentine, L. E., and Nimmo, D. G. (2020). Spot on: using camera traps to individually monitor one of the world’s largest lizards. Wildlife Research 47, 326–337.
| Spot on: using camera traps to individually monitor one of the world’s largest lizards.Crossref | GoogleScholarGoogle Scholar |
O’Connell, A. F., Nichols, J. D., and Karanth, K. U. (2010). ‘Camera traps in animal ecology: methods and analyses.’ (Springer Science & Business Media.)
Otto, C. R., and Roloff, G. J. (2011). Using multiple methods to assess detection probabilities of forest‐floor wildlife. The Journal of Wildlife Management 75, 423–431.
| Using multiple methods to assess detection probabilities of forest‐floor wildlife.Crossref | GoogleScholarGoogle Scholar |
Penjor, U., Tan, C. K. W., Wangdi, S., and Macdonald, D. W. (2019). Understanding the environmental and anthropogenic correlates of tiger presence in a montane conservation landscape. Biological Conservation 238, 108196.
| Understanding the environmental and anthropogenic correlates of tiger presence in a montane conservation landscape.Crossref | GoogleScholarGoogle Scholar |
Prowse, T. A. A., Johnson, C. N., Cassey, P., Bradshaw, C. J. A., and Brook, B. W. (2015). Ecological and economic benefits to cattle rangelands of restoring an apex predator. Journal of Applied Ecology 52, 455–466.
| Ecological and economic benefits to cattle rangelands of restoring an apex predator.Crossref | GoogleScholarGoogle Scholar |
Purwandana, D., Ariefiandy, A., Imansyah, M. J., Rudiharto, H., Seno, A., Ciofi, C., Fordham, D. A., and Jessop, T. S. (2014a). Demographic status of Komodo dragons populations in Komodo National Park. Biological Conservation 171, 29–35.
| Demographic status of Komodo dragons populations in Komodo National Park.Crossref | GoogleScholarGoogle Scholar |
Purwandana, D., Ariefiandy, A., Imansyah, M. J., Rudiharto, H., Seno, A., Ciofi, C., Fordham, D. A., and Jessop, T. S. (2014b). Demographic status of Komodo dragons populations in Komodo National Park. Biological Conservation 171, 29–35.
| Demographic status of Komodo dragons populations in Komodo National Park.Crossref | GoogleScholarGoogle Scholar |
Purwandana, D., Ariefiandy, A., Imansyah, M. J., Ciofi, C., Forsyth, D. M., Gormley, A. M., Rudiharto, H., Seno, A., Fordham, D. A., and Gillespie, G. (2015). Evaluating environmental, demographic and genetic effects on population‐level survival in an island endemic. Ecography 38, 1060–1070.
| Evaluating environmental, demographic and genetic effects on population‐level survival in an island endemic.Crossref | GoogleScholarGoogle Scholar |
Purwandana, D., Ariefiandy, A., Imansyah, M. J., Seno, A., Ciofi, C., Letnic, M., and Jessop, T. S. (2016). Ecological allometries and niche use dynamics across Komodo dragon ontogeny. Naturwissenschaften 103, 27.
| Ecological allometries and niche use dynamics across Komodo dragon ontogeny.Crossref | GoogleScholarGoogle Scholar | 26936625PubMed |
Purwandana, D., Ciofi, C., Imansyah, M. J., Ariefiandy, A., Rudiharto, H., and Jessop, T. S. (2021). Prey Preferences and Body Mass Most Influence Movement Behavior and Home Range Area of Komodo Dragons. Ichthyology & Herpetology 109, 92–101.
| Prey Preferences and Body Mass Most Influence Movement Behavior and Home Range Area of Komodo Dragons.Crossref | GoogleScholarGoogle Scholar |
Read, J., Bengsen, A., Meek, P., and Moseby, K. (2015). How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia. Wildlife Research 42, 1–12.
| How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia.Crossref | GoogleScholarGoogle Scholar |
Richardson, E., Nimmo, D. G., Avitabile, S., Tworkowski, L., Watson, S. J., Welbourne, D., and Leonard, S. W. J. (2017). Camera traps and pitfalls: an evaluation of two methods for surveying reptiles in a semiarid ecosystem. Wildlife Research 44, 637–647.
| Camera traps and pitfalls: an evaluation of two methods for surveying reptiles in a semiarid ecosystem.Crossref | GoogleScholarGoogle Scholar |
Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
| N-mixture models for estimating population size from spatially replicated counts.Crossref | GoogleScholarGoogle Scholar | 15032780PubMed |
Searle, C. E., Bauer, D. T., Kesch, M. K., Hunt, J. E., Mandisodza-Chikerema, R., Flyman, M. V., Macdonald, D. W., Dickman, A. J., and Loveridge, A. J. (2020). Drivers of leopard (Panthera pardus) habitat use and relative abundance in Africa’s largest transfrontier conservation area. Biological Conservation 248, 108649.
| Drivers of leopard (Panthera pardus) habitat use and relative abundance in Africa’s largest transfrontier conservation area.Crossref | GoogleScholarGoogle Scholar |
Sewell, D., Guillera-Arroita, G., Griffiths, R. A., and Beebee, T. J. (2012). When is a species declining? Optimising survey effort to detect population changes in reptiles. PLoS One 7, e43387.
| When is a species declining? Optimising survey effort to detect population changes in reptiles.Crossref | GoogleScholarGoogle Scholar | 22937044PubMed |
Stewart, F. E., Volpe, J. P., and Fisher, J. T. (2019). The debate about bait: a red herring in wildlife research. The Journal of Wildlife Management 83, 985–992.
| The debate about bait: a red herring in wildlife research.Crossref | GoogleScholarGoogle Scholar |
Tan, C. K. W., Rocha, D. G., Clements, G. R., Brenes-Mora, E., Hedges, L., Kawanishi, K., Mohamad, S. W., Mark Rayan, D., Bolongon, G., Moore, J., Wadey, J., Campos-Arceiz, A., and Macdonald, D. W. (2017). Habitat use and predicted range for the mainland clouded leopard Neofelis nebulosa in Peninsular Malaysia. Biological Conservation 206, 65–74.
| Habitat use and predicted range for the mainland clouded leopard Neofelis nebulosa in Peninsular Malaysia.Crossref | GoogleScholarGoogle Scholar |
Tarugara, A., Clegg, B. W., Gandiwa, E., and Muposhi, V. K. (2019). Cost–benefit analysis of increasing sampling effort in a baited-camera trap survey of an African leopard (Panthera pardus) population. Global Ecology and Conservation 18, e00627.
| Cost–benefit analysis of increasing sampling effort in a baited-camera trap survey of an African leopard (Panthera pardus) population.Crossref | GoogleScholarGoogle Scholar |
Thompson, W. (2013). ‘Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters.’ (Island Press.)
Thorn, M., Green, M., Bateman, P. W., Waite, S., and Scott, D. M. (2011). Brown hyaenas on roads: estimating carnivore occupancy and abundance using spatially auto-correlated sign survey replicates. Biological Conservation 144, 1799–1807.
| Brown hyaenas on roads: estimating carnivore occupancy and abundance using spatially auto-correlated sign survey replicates.Crossref | GoogleScholarGoogle Scholar |
Tingley, R., Macdonald, S. L., Mitchell, N. J., Woinarski, J. C. Z., Meiri, S., Bowles, P., Cox, N. A., Shea, G. M., Böhm, M., Chanson, J., Tognelli, M. F., Harris, J., Walke, C., Harrison, N., Victor, S., Woods, C., Amey, A. P., Bamford, M., Catt, G., Clemann, N., Couper, P. J., Cogger, H., Cowan, M., Craig, M. D., Dickman, C. R., Doughty, P., Ellis, R., Fenner, A., Ford, S., Gaikhorst, G., Gillespie, G. R., Greenlees, M. J., Hobson, R., Hoskin, C. J., How, R., Hutchinson, M. N., Lloyd, R., McDonald, P., Melville, J., Michael, D. R., Moritz, C., Oliver, P. M., Peterson, G., Robertson, P., Sanderson, C., Somaweera, R., Teale, R., Valentine, L., Vanderduys, E., Venz, M., Wapstra, E., Wilson, S., and Chapple, D. G. (2019). Geographic and taxonomic patterns of extinction risk in Australian squamates. Biological Conservation 238, 108203.
| Geographic and taxonomic patterns of extinction risk in Australian squamates.Crossref | GoogleScholarGoogle Scholar |
Todd, B. D., Willson, J. D., and Gibbons, J. W. (2010). The global status of reptiles and causes of their decline. In ‘Ecotoxicology of Amphibians and Reptiles’, Second Edition. (Eds D. W. Sparling, C. A. Bishop, and S. Krest.) pp. 47–67. (CRC Press: Pensacola, FL, USA.)
Welbourne, D. (2013). A method for surveying diurnal terrestrial reptiles with passive infrared automatically triggered cameras. Herpetological Review 44, 247–250.
Welbourne, D. J., MacGregor, C., Paull, D., and Lindenmayer, D. B. (2015). The effectiveness and cost of camera traps for surveying small reptiles and critical weight range mammals: a comparison with labour-intensive complementary methods. Wildlife Research 42, 414–425.
| The effectiveness and cost of camera traps for surveying small reptiles and critical weight range mammals: a comparison with labour-intensive complementary methods.Crossref | GoogleScholarGoogle Scholar |
Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002). ‘Analysis and management of animal populations.’ (Academic Press.)
Wintle, B. A., Kavanagh, R. P., McCarthy, M. A., and Burgman, M. A. (2005). Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials. The Journal of Wildlife Management 69, 905–917.
| Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials.Crossref | GoogleScholarGoogle Scholar |
Wintle, B. A., Walshe, T. V., Parris, K. M., and McCarthy, M. A. (2012). Designing occupancy surveys and interpreting non‐detection when observations are imperfect. Diversity & Distributions 18, 417–424.
| Designing occupancy surveys and interpreting non‐detection when observations are imperfect.Crossref | GoogleScholarGoogle Scholar |
Wysong, M. L., Iacona, G. D., Valentine, L. E., Morris, K., and Ritchie, E. G. (2020). On the right track: placement of camera traps on roads improves detection of predators and shows non-target impacts of feral cat baiting. Wildlife Research 47, 557–569.
| On the right track: placement of camera traps on roads improves detection of predators and shows non-target impacts of feral cat baiting.Crossref | GoogleScholarGoogle Scholar |