Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Cats are a key threatening factor to the survival of local populations of native small mammals in Australia’s tropical savannas: evidence from translocation trials with Rattus tunneyi

Katherine Tuft https://orcid.org/0000-0002-3585-444X A B R , Sarah Legge https://orcid.org/0000-0001-6968-2781 A C D E , Anke S. K. Frank F G H I , Alex I. James A , Tegan May A J , Ethan Page A , Ian J. Radford https://orcid.org/0000-0002-9388-7100 K , John C. Z. Woinarski https://orcid.org/0000-0002-1712-9500 E , Alaric Fisher L , Michael J. Lawes M , Iain J. Gordon N O P Q and Chris N. Johnson I
+ Author Affiliations
- Author Affiliations

A Australian Wildlife Conservancy, Mornington Sanctuary, PMB 925, Derby, WA 6728, Australia.

B Arid Recovery, Olympic Dam, PO Box 147, Roxby Downs, SA 5725, Australia.

C National Environmental Science Program Threatened Species Recovery Hub, Fenner School of Environment and Society, Australian National University, ACT 0200, Australia.

D Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Qld 4072, Australia.

E National Environmental Science Program Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.

F School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.

G Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany.

H Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany.

I School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia.

J The Nature Conservancy, 2424 Spruce Street, Boulder, CO 80302, USA.

K Science and Conservation Division, Department of Biodiversity, Conservation and Attractions, PO Box 942, Kununurra, WA 6743, Australia.

L Department of Land Resource Management, Northern Territory Government, PO Box 496, Palmerston, NT 0831, Australia.

M School of Life Sciences, University of KwaZulu-Natal, Scottsville 3209, South Africa.

N Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.

O James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK.

P Central Queensland University, Townsville, Qld 4812, Australia.

Q Land & Water, CSIRO, Townsville, Qld 4811, Australia.

R Corresponding author. Email: katherine.tuft@aridrecovery.org.au

Wildlife Research 48(7) 654-662 https://doi.org/10.1071/WR20193
Submitted: 16 November 2020  Accepted: 18 April 2021   Published: 2 July 2021

Abstract

Context: Invasive predators are a key threat to biodiversity worldwide. In Australia, feral cats are likely to be responsible for many extinctions of native mammal species in the south and centre of the continent.

Aims: Here we examine the effect of feral cats on native rodent populations in the second of two translocation experiments.

Methods: In a wild-to-wild translocation, we introduced pale field rats, Rattus tunneyi, whose populations are declining in the wild, into two pairs of enclosures where accessibility by feral cats was manipulated.

Key results: Individual rats translocated into enclosures accessible to cats were rapidly extirpated after cats were first detected visiting the enclosures. Rats in the enclosure not exposed to cats were 6.2 times more likely to survive than those exposed to cats. Two individual cats were responsible for the deaths of all but 1 of 18 cat-accessible rats. Rats in the site with denser ground cover persisted better than in the site with more open cover.

Conclusions: These results are consistent with our previous study of a different native rat species in the same experimental setup, and provide further evidence that, even at low densities, feral cats can drive local populations of small mammals to extinction.

Implications: Effective feral cat control may be necessary to enable recovery of small mammals.

Keywords: feral cat, extinction, threatened species, predation pressure, small mammal populations.


References

Abbott, I. (2002). Origin and spread of the cat, Felis catus, on mainland Australia, with a discussion of the magnitude of its early impact on native fauna. Wildlife Research 29, 51–74.
Origin and spread of the cat, Felis catus, on mainland Australia, with a discussion of the magnitude of its early impact on native fauna.Crossref | GoogleScholarGoogle Scholar |

Banks, P. B., Carthey, A. J. R., and Bytheway, J. P. (2018). Australian native mammals recognize and respond to alien predators: a meta-analysis. Proceedings. Biological Sciences 285, 20 180 857.
Australian native mammals recognize and respond to alien predators: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 30135153PubMed |

Bannister, H. L., Lynch, C. E., and Moseby, K. E. (2016). Predator swamping and supplementary feeding do not improve reintroduction success for a threatened Australian mammal, Bettongia lesueur. Australian Mammalogy 38, 177–187.
Predator swamping and supplementary feeding do not improve reintroduction success for a threatened Australian mammal, Bettongia lesueur.Crossref | GoogleScholarGoogle Scholar |

Bellard, C., Cassey, P., and Blackburn, T. M. (2016). Alien species as a driver of recent extinctions. Biology Letters 12, 20 150 623.
Alien species as a driver of recent extinctions.Crossref | GoogleScholarGoogle Scholar | 26888913PubMed |

Bonnaud, E., Berger, G., Bourgeois, K., Legrand, J., and Vidal, E. (2012). Predation by cats could lead to the extinction of the Mediterranean endemic Yelkouan Shearwater Puffinus yelkouan at a major breeding site. The Ibis 154, 566–577.
Predation by cats could lead to the extinction of the Mediterranean endemic Yelkouan Shearwater Puffinus yelkouan at a major breeding site.Crossref | GoogleScholarGoogle Scholar |

Bonyhardy, T. (2019). ‘The Enchantment of the Long-haired Rat: A Rodent History of Australia.’ (The Text Publishing Company.)

Braithwaite, R., and Griffiths, A. (1996). The Paradox of Rattus tunneyi: endangerment of a Native Pest. Wildlife Research 23, 1–21.
The Paradox of Rattus tunneyi: endangerment of a Native Pest.Crossref | GoogleScholarGoogle Scholar |

Carthey, A. J. R., and Blumstein, D. T. (2018). Predicting predator recognition in a changing world. Trends in Ecology & Evolution 33, 106–115.
Predicting predator recognition in a changing world.Crossref | GoogleScholarGoogle Scholar |

Childs, J. E. (1986). Size-Dependent Predation on Rats (Rattus norvegicus) by House Cats (Felis catus) in an Urban Setting. Journal of Mammalogy 67, 196–199.
Size-Dependent Predation on Rats (Rattus norvegicus) by House Cats (Felis catus) in an Urban Setting.Crossref | GoogleScholarGoogle Scholar |

Davies, H. F., Maier, S. W., and Murphy, B. P. (2020). Feral cats are more abundant under severe disturbance regimes in an Australian tropical savanna. Wildlife Research 47, 624–632.
Feral cats are more abundant under severe disturbance regimes in an Australian tropical savanna.Crossref | GoogleScholarGoogle Scholar |

Davies, H. F., Rangers, T. L., Rees, M. W., Stokeld, D., Miller, A. C., Gillespie, G. R., and Murphy, B. P. (2021). Variation in feral cat density between two large adjacent islands in Australia’s monsoon tropics. Pacific Conservation Biology , .
Variation in feral cat density between two large adjacent islands in Australia’s monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R., and Newsome, T. M. (2015). Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management. Applied Animal Behaviour Science 173, 76–87.
Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Doherty, T., Davis, R. A., Etten, E. J. B., Algar, D., Collier, N., Dickman, C. R., Edwards, G. P., Masters, P., Palmer, R., and Robinson, S. (2015). A continental-scale analysis of feral cat diet in Australia. Journal of Biogeography 42, 964–975.
A continental-scale analysis of feral cat diet in Australia.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G., and Dickman, C. R. (2016). Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America 113, 11261–11265.
Invasive predators and global biodiversity loss.Crossref | GoogleScholarGoogle Scholar | 27638204PubMed |

Fisher, D. O., Johnson, C. N., Lawes, M. J., Fritz, S. A., McCallum, H., Blomberg, S. P., VanDerWal, J., Abbott, B., Frank, A., Legge, S., Letnic, M., Thomas, C. R., Fisher, A., Gordon, I. J., and Kutt, A. (2014). The current decline of tropical marsupials in Australia: is history repeating? Global Ecology and Biogeography 23, 181–190.
The current decline of tropical marsupials in Australia: is history repeating?Crossref | GoogleScholarGoogle Scholar |

Frank, A. S. K., Johnson, C. N., Potts, J. M., Fisher, A., Lawes, M. J., Woinarski, J. C. Z., Tuft, K., Radford, I. J., Gordon, I. J., Collis, M.-A., and Legge, S. (2014). Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. Journal of Applied Ecology 51, 1486–1493.
Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Greenville, A. C., Wardle, G. M., and Dickman, C. R. (2013). Extreme rainfall events predict irruptions of rat plagues in central Australia. Austral Ecology 38, 754–764.
Extreme rainfall events predict irruptions of rat plagues in central Australia.Crossref | GoogleScholarGoogle Scholar |

Hohnen, R., Tuft, K., McGregor, H. W., Legge, S., Radford, I. J., and Johnson, C. N. (2016). Occupancy of the invasive feral cat varies with habitat complexity. PLoS One 11, e0152520.
Occupancy of the invasive feral cat varies with habitat complexity.Crossref | GoogleScholarGoogle Scholar | 27655024PubMed |

Hosmer, D. W., and Lemeshow, S. (2008). ‘Applied survival analysis: regression modelling of time to event data.’ (John Wiley and Sons: Hobokem, NJ, USA.)

Jolly, C. J., Webb, J. K., Gillespie, G. R., and Phillips, B. L. (2020). Training fails to elicit behavioral change in a marsupial suffering evolutionary loss of antipredator behaviors. Journal of Mammalogy 101, 1108–1116.
Training fails to elicit behavioral change in a marsupial suffering evolutionary loss of antipredator behaviors.Crossref | GoogleScholarGoogle Scholar |

Lawes, M. J., Murphy, B. P., Fisher, A., Woinarski, J. C. Z., Edwards, A. C., and Russell-Smith, J. (2015). Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. International Journal of Wildland Fire 24, 712–722.
Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park.Crossref | GoogleScholarGoogle Scholar |

Leahy, L., Legge, S. M., Tuft, K., McGregor, H. W., Barmuta, L. A., Jones, M. E., and Johnson, C. N. (2015). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Research 42, 705–716.
Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. A., and Fisher, A. (2011a). Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores. Austral Ecology 36, 791–799.
Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, S., Kingswood, R., Maher, B., and Swan, D. (2011b). EcoFire: restoring the biodiversity values of the Kimberley region by managing fire. Ecological Management & Restoration 12, 84–92.
EcoFire: restoring the biodiversity values of the Kimberley region by managing fire.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., Baseler, M., Buckmaster, T., Dickman, C. R., Doherty, T., Edwards, G., Eyre, T., Fancourt, B. A., Ferguson, D., Forsyth, D. M., Geary, W. L., Gentle, M., Gillespie, G., Greenwood, L., Hohnen, R., Hume, S., Johnson, C. N., Maxwell, M., McDonald, P. J., Morris, K., Moseby, K., Newsome, T., Nimmo, D., Paltridge, R., Ramsey, D., Read, J., Rendall, A., Rich, M., Ritchie, E., Rowland, J., Short, J., Stokeld, D., Sutherland, D. R., Wayne, A. F., Woodford, L., and Zewe, F. (2017). Enumerating a continental-scale threat: how many feral cats are in Australia? Biological Conservation 206, 293–303.
Enumerating a continental-scale threat: how many feral cats are in Australia?Crossref | GoogleScholarGoogle Scholar |

Legge, S., Smith, J. G., James, A., Tuft, K. D., Webb, T., and Woinarski, J. C. Z. (2019). Interactions among threats affect conservation management outcomes: livestock grazing removes the benefits of fire management for small mammals in Australian tropical savannas. Conservation Science and Practice 1, e52.
Interactions among threats affect conservation management outcomes: livestock grazing removes the benefits of fire management for small mammals in Australian tropical savannas.Crossref | GoogleScholarGoogle Scholar |

McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2014). Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS One 9, e109097.
Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.Crossref | GoogleScholarGoogle Scholar | 25329902PubMed |

McGregor, H., Legge, S., Jones, M. E., and Johnson, C. N. (2015a). Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS One 10, e0133915.
Feral cats are better killers in open habitats, revealed by animal-borne video.Crossref | GoogleScholarGoogle Scholar | 26288224PubMed |

McGregor, H. W., Legge, S., Potts, J., Jones, M. H., and Johnson, C. N. (2015b). Density and home range of feral cats in north-western Australia. Wildlife Research 42, 223–231.
Density and home range of feral cats in north-western Australia.Crossref | GoogleScholarGoogle Scholar |

McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2016). Extraterritorial hunting expeditions to intense fire scars by feral cats. Scientific Reports 6, 22559.
Extraterritorial hunting expeditions to intense fire scars by feral cats.Crossref | GoogleScholarGoogle Scholar | 26932268PubMed |

Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Josh Donlan, C., Keitt, B. S., Le Corre, M., Horwath, S. V., and Nogales, M. (2011). A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17, 3503–3510.
A global review of the impacts of invasive cats on island endangered vertebrates.Crossref | GoogleScholarGoogle Scholar |

Moseby, K., and Read, J. (2006). The efficacy of feral cat, fox and rabbit exclusion fence designs for threatened species protection. Biological Conservation 127, 429–437.
The efficacy of feral cat, fox and rabbit exclusion fence designs for threatened species protection.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Peacock, D. E., and Read, J. L. (2015). Catastrophic cat predation: a call for predator profiling in wildlife protection programs. Biological Conservation 191, 331–340.
Catastrophic cat predation: a call for predator profiling in wildlife protection programs.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Letnic, M., Blumstein, D. T., and West, R. (2018). Designer prey: can controlled predation accelerate selection for anti-predator traits in naïve populations? Biological Conservation 217, 213–221.
Designer prey: can controlled predation accelerate selection for anti-predator traits in naïve populations?Crossref | GoogleScholarGoogle Scholar |

Murphy, B. P., Woolley, L.-A., Geyle, H. M., Legge, S. M., Palmer, R., Dickman, C. R., Augusteyn, J., Brown, S. C., Comer, S., Doherty, T. S., Eager, C., Edwards, G., Fordham, D. A., Harley, D., McDonald, P. J., McGregor, H., Moseby, K. E., Myers, C., Read, J., Riley, J., Stokeld, D., Trewella, G. J., Turpin, J. M., and Woinarski, J. C. Z. (2019). Introduced cats (Felis catus) eating a continental fauna: the number of mammals killed in Australia. Biological Conservation 237, 28–40.
Introduced cats (Felis catus) eating a continental fauna: the number of mammals killed in Australia.Crossref | GoogleScholarGoogle Scholar |

Paltridge, R., Gibson, D., and Edwards, G. (1997). Diet of the feral cat (Felis catus) in Central Australia. Wildlife Research 24, 67–76.
Diet of the feral cat (Felis catus) in Central Australia.Crossref | GoogleScholarGoogle Scholar |

Pech, R. P., Sinclair, A. R. E., and Newsome, A. E. (1995). Predation models for primary and secondary prey species. Wildlife Research 22, 55–63.
Predation models for primary and secondary prey species.Crossref | GoogleScholarGoogle Scholar |

Read, J., Peacock, D., Wayne, A., and Moseby, K. (2015). Toxic Trojans: can feral cat predation be mitigated by making their prey poisonous? Wildlife Research 42, 689–696.
Toxic Trojans: can feral cat predation be mitigated by making their prey poisonous?Crossref | GoogleScholarGoogle Scholar |

Short, J., and Calaby, J. (2001). The status of Australian mammals in 1922: collections and field notes of museum collector Charles Hoy. Australian Zoologist 31, 533–562.
The status of Australian mammals in 1922: collections and field notes of museum collector Charles Hoy.Crossref | GoogleScholarGoogle Scholar |

Sih, A., Bolnick, D. I., Luttbeg, B., Orrock, J. L., Peacor, S. D., Pintor, L. M., Preisser, E., Rehage, J. S., and Vonesh, J. R. (2010). Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621.
Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions.Crossref | GoogleScholarGoogle Scholar |

Stobo-Wilson, A. M., Stokeld, D., Einoder, L. D., Davies, H. F., Fisher, A., Hill, B. M., Mahney, T., Murphy, B. P., Stevens, A., Woinarski, J. C. Z., Rangers, B., Rangers, W., and Gillespie, G. R. (2020). Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Diversity & Distributions 26, 832–842.
Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia.Crossref | GoogleScholarGoogle Scholar |

Stokeld, D., Fisher, A., Gentles, T., Hill, B., Triggs, B., Woinarski, J. C. Z., and Gillespie, G. R. (2018). What do predator diets tell us about mammal declines in Kakadu National Park? Wildlife Research 45, 92–101.
What do predator diets tell us about mammal declines in Kakadu National Park?Crossref | GoogleScholarGoogle Scholar |

Therneau, T. (2015). ‘A Package for Survival Analysis in S.’ R package version 2.37-7. Available at http://CRAN.R-project.org/package=survival [verified 10 May 2021].

Woinarski, J. C. Z., Legge, S., Fitzsimons, J. A., Traill, B. J., Burbidge, A. A., Fisher, A., Firth, R. S. C., Gordon, I. J., Griffiths, A. D., Johnson, C. N., McKenzie, N. L., Palmer, C., Radford, I., Rankmore, B., Ritchie, E. G., Ward, S., and Ziembicki, M. (2011). The disappearing mammal fauna of northern Australia: context, cause, and response. Conservation Letters 4, 192–201.
The disappearing mammal fauna of northern Australia: context, cause, and response.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A., and Harrison, P. (2014). ‘The action plan for Australian mammals 2012.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Ziembicki, M., Woinarski, J. C. Z., Webb, J. K., Vanderduys, E., Tuft, K., Smith, J. G., Ritchie, E. G., Reardon, T. B., Radford, I. J., Preece, N., Perry, J., Murphy, B. P., McGregor, H., Legge, S., Leahy, L., Lawes, M. J., Kanowski, J., Johnson, C. N., James, A., Griffiths, A., Gillespie, G. R., Frank, A., Fisher, A., and Burbidge, A. (2015). Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 6, 169–226.
Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia.Crossref | GoogleScholarGoogle Scholar |