Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Density and activity patterns of Pallas’s cats, Otocolobus manul, in central Mongolia

Stefano Anile https://orcid.org/0000-0001-8871-9615 A F , Claudio Augugliaro B , Bariushaa Munkhtsog C , Fabio Dartora B , Andrea Vendramin D , Giovanni Bombieri E and Clayton K. Nielsen A
+ Author Affiliations
- Author Affiliations

A Cooperative Wildlife Research Laboratory, Southern Illinois University, 251 Life Science II, Mail Code 6504, Carbondale, IL 62901, USA.

B Green Initiative NGO, Bayangol District, 6th Khoroo, Micro District 10, Ulaanbaatar, 210349, Mongolia.

C Institute of Biology, Mongolian Academy of Sciences, PO Box 256, Ulaanbaatar 13380, Mongolia.

D Università degli studi di Udine – DI4A (Dipartimento di Scienze Agroalimentari, Ambientali e Animali), via Sondrio 2/A Udine, 33100, Italy.

E World Biodiversity Association, 9 Lungadige Porta Vittoria, Verona, 37129, Italy.

F Corresponding author. Email: stefanoanile@yahoo.it

Wildlife Research 48(3) 264-272 https://doi.org/10.1071/WR20061
Submitted: 15 April 2020  Accepted: 1 October 2020   Published: 2 February 2021

Abstract

Context. The ranges of many small, at-risk felid species occur almost entirely in unprotected areas, where research efforts are minimal; hence data on their density and activity patterns are scare.

Aims. We estimated density and activity patterns of Pallas’s cats on unprotected lands in central Mongolia during two periods (May–August and September–November) in 2019.

Methods. We used spatially explicit capture–recapture models to estimate population density at 15.2 ± 4.8 individuals per 100 km2.

Key results. We obtained 484 Pallas’s cat images from 153 detections during 4266 camera-days. We identified Pallas’s cats using pelage markings and identified 16 individuals from 64 detections. Pallas’s cat activity was consistent between the two survey periods (~0.50), with cats mainly active during crepuscular hours in the first period and strictly diurnal in the second.

Conclusions. We provide the first estimation of a Pallas’s cat population density using camera-trapping. Compared with other methods used, densities were high in our study area, which was likely to be due to a combination of highly suitable habitat and abundant prey. Seasonal shifts in the activity patterns of Pallas’s cats indicated a likely adaptive response to reduced risk of depredation by raptors.

Implications. We recommend August to November as the best time for camera-trapping surveys for Pallas’s cats, given their high daily activity and the easiest interpretation of images used for individual identification collected during this time. We also suggest that future camera-trapping surveys of Pallas’s cat be mindful of potential camera-trap avoidance through time.

Keywords: activity, camera-trapping, density, manul, Mongolia.


References

Agostinelli, C., and Lund, U. (2013). R package ‘circular’: circular statistics. R package version 0.4-7. Available at http://r-forge.r-project.org/projects/circular/ [verified 30 November 2020].

Alexander, J. S., Gopalaswamy, A. M., Shi, K., and Riordan, P. (2015). Face value: towards robust estimates of snow leopard densities. PLoS One 10, e0134815.
Face value: towards robust estimates of snow leopard densities.Crossref | GoogleScholarGoogle Scholar | 26322682PubMed |

Anile, S., and Devillard, S. (2016). Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae. Animal Conservation 19, 35–45.
Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae.Crossref | GoogleScholarGoogle Scholar |

Anile, S., and Devillard, S. (2018). Camera-trapping provides insights into adult sex ratio variability in felids. Mammal Review 48, 168–179.
Camera-trapping provides insights into adult sex ratio variability in felids.Crossref | GoogleScholarGoogle Scholar |

Anile, S., Ragni, B., Randi, E., Mattucci, F., and Rovero, F. (2014). Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods. Journal of Zoology 293, 252–261.
Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods.Crossref | GoogleScholarGoogle Scholar |

Augugliaro, C., Havmoller, R. W., Monti, I. E., Havmoller, L. W., Janchivlamdan, C., and Lkhagvasuren, B. (2020). Non-volant mammal inventory of western Mongolian–Manchurian Grassland Ecoregion: a biogeographic crossroad worth preserving. Check List 16, 287–301.
Non-volant mammal inventory of western Mongolian–Manchurian Grassland Ecoregion: a biogeographic crossroad worth preserving.Crossref | GoogleScholarGoogle Scholar |

Barashkova, A., Kirilyuk, V. E., and Smelansky, I. E. (2017). Significance of protected areas for the Pallas’s cat (Otocolobus manul: Felidae) conservation in Russia. Nature Conservation Research 2, 113–124.
Significance of protected areas for the Pallas’s cat (Otocolobus manul: Felidae) conservation in Russia.Crossref | GoogleScholarGoogle Scholar |

Barashkova, A., Smelanski, I., Kirilyuk, V., Naidenko, S., Antonevich, A., Gritsina, M., Uulu, K. Z., Koshin, M., Battogtokh, N., Otgonbayar, B., Grachev, A., and Lissovsky, A. (2019). Distribution and status of the manul in central Asia and adjacent areas. Cat News , 14–23.

Blanco, J., Bellón, B., Fabricius, C., de O. Roque, F., Pays, O., Laurent, F., Fritz, H., and Reanud, P. C. (2020). Interface processes between protected and unprotected areas: a global review and ways forward. Global Change Biology 26, 1138–1154.
Interface processes between protected and unprotected areas: a global review and ways forward.Crossref | GoogleScholarGoogle Scholar | 31597213PubMed |

de Oliveira, T. G., Tortato, M. A., Silveira, L., Kasper, L. B., Mazim, F. D., Lucherini, M., Jacomo, A. T., Soares, J. B. G., Marques, R. V., and Sunquist, M. (2010). Ocelot ecology and its effect on the small-felid guild in the lowland neotropics. In ‘Biology and Conservation of Wild Felids’. (Eds D. W. MacDonald, and A. J. Loveridge.) pp. 559–580. (Oxford University Press: London, UK.)

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., and Collen, B. (2014). Defaunation in the Anthropocene. Science 345, 401–406.
Defaunation in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 25061202PubMed |

Efford, M. G. (2019). secr: spatially explicit capture-recapture models. R package version 3.2.0. Available at http://cran.r-project.org/package=secr [verified 30 November 2020].

Hearn, A. J., Ross, J., Bernard, H., Bakar, S. A., Hunter, L. T. B., and Macdonald, D. W. (2016). The first estimates of marbled cat Pardofelis marmorata population density from Bornean primary and selectively logged forest. PLoS One 11, e0151046.
The first estimates of marbled cat Pardofelis marmorata population density from Bornean primary and selectively logged forest.Crossref | GoogleScholarGoogle Scholar | 27007219PubMed |

Hedges, L., Lam, W. Y., Campos-Arceiz, A., Rayan, M., Latham, C. J., Saaban, S., and Clements, G. R. (2015). Melanistic leopards reveal their spots: infrared camera traps provide a population density estimate of leopards in Malaysia. The Journal of Wildlife Management 79, 846–853.
Melanistic leopards reveal their spots: infrared camera traps provide a population density estimate of leopards in Malaysia.Crossref | GoogleScholarGoogle Scholar |

Hooker, M. J., Chandler, R. B., Bond, B. T., and Chamberlain, M. J. (2020). Assessing population viability of black bears using spatial capture–recapture models. The Journal of Wildlife Management 84, 1100–1113.
Assessing population viability of black bears using spatial capture–recapture models.Crossref | GoogleScholarGoogle Scholar |

Huaranca, J. C., Villalba, L. M., Negroes, N., Jimenez, J. E., Macdonald, D. W., and Pacheco, L. (2020). Density and activity patterns of Andean cat and pampas cat (Leopardus jacobita and L. colocolo) in the Bolivian Altiplano. Wildlife Research 47, 68–76.
Density and activity patterns of Andean cat and pampas cat (Leopardus jacobita and L. colocolo) in the Bolivian Altiplano.Crossref | GoogleScholarGoogle Scholar |

Hunter, L. (Ed.) (2015). ‘Wild Cats of the World.’ (Bloomsbury Publishing: London, UK.)

Kitchener, A. C., Breitenmoser-Würsten, C., Eizirik, E., Gentry, A., Werdelin, L., Wilting, A., Yamaguchi, N., Abramov, A. V., Christiansen, P., Driscoll, C., Duckworth, J. W., Johnson, W., Luo, S. J., Meijaard, E., O’Donoghue, P., Sanderson, J., Seymour, K., Bruford, M., Groves, C., Hoffmann, M., Nowell, K., Timmons, Z., and Tobe, S. (2017). A revised taxonomy of the Felidae. the final report of the cat classification task force of the IUCN/SSC cat specialist group. Cat News , 1–80.

Lanz, T., Breitenmoser-Wursten, C., Barclay, D., Nygren, E., Samelius, G., and Breitenmoser, U. (2019). Prologue: why care about Otocolobus manul? Cat News , 5–8.

Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A., and Lehikoinen, A. (2019). Protected areas act as a buffer against detrimental effects of climate change: evidence from large‐scale, long‐term abundance data. Global Change Biology 25, 304–313.
Protected areas act as a buffer against detrimental effects of climate change: evidence from large‐scale, long‐term abundance data.Crossref | GoogleScholarGoogle Scholar | 30393928PubMed |

Lesmeister, D. B., Nielsen, C. K., Schauber, E. M., and Hellgreen, E. C. (2015). Spatial and temporal structure of a mesocarnivore guild in Midwestern North America. Wildlife Monographs 191, 1–61.
Spatial and temporal structure of a mesocarnivore guild in Midwestern North America.Crossref | GoogleScholarGoogle Scholar |

Li, J., Schaller, G. B., McCarthy, T. M., Wang, D., Jiagong, Z., Cai, P., Basang, L., and Lu, Z. (2013). A communal sign post of snow leopards (Panthera uncia) and other species on the Tibetan plateau, China. International Journal of Biodiversity 2013, 1–8.
A communal sign post of snow leopards (Panthera uncia) and other species on the Tibetan plateau, China.Crossref | GoogleScholarGoogle Scholar |

Linden, D. W., Green, D. S., Chelysheva, E. V., Mandere, S. M., and Dloniak, S. M. (2020). Challenges and opportunities in population monitoring of cheetahs. Population Ecology 62, 341–352.
Challenges and opportunities in population monitoring of cheetahs.Crossref | GoogleScholarGoogle Scholar |

Macdonald, D. W., and Loveridge, A. J. (Eds) (2010). ‘The Biology and Conservation of Wild Felids.’ (Oxford University Press: London, UK.)

Martin, L. J., Blossey, B., and Ellis, E. (2012). Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Frontiers in Ecology and the Environment 10, 195–201.
Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations.Crossref | GoogleScholarGoogle Scholar |

Mohamed, A., Sollmann, R., Wong, S. T., Niedballa, J., Abrams, J. F., Kissing, J., and Wilting, A. (2019). Counting Sunda clouded leopards with confidence: incorporating individual heterogeneity in density estimates. Oryx 55, 56–65.
Counting Sunda clouded leopards with confidence: incorporating individual heterogeneity in density estimates.Crossref | GoogleScholarGoogle Scholar |

Mora, C., and Sale, P. F. (2011). Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Marine Ecology Progress Series 434, 251–266.
Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea.Crossref | GoogleScholarGoogle Scholar |

Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T., and Leite Pitman, M. R. P. (2004). The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska tiger reserve, Rajasthan, India. Journal of Zoology 262, 405–411.
The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska tiger reserve, Rajasthan, India.Crossref | GoogleScholarGoogle Scholar |

Murdoch, J. D., Munkhzul, T., and Reading, R. P. (2006). Pallas’ cat ecology and conservation in the semi-desert steppes of Mongolia. Cat News 45, 18–19.

Murphy, S. M., Wilckens, D. T., Augustine, B. C., Peyton, M. A., and Harper, G. C. (2019). Improving estimation of puma (Puma concolor) population density: clustered camera-trapping, telemetry data, and generalized spatial mark–resight models. Scientific Reports 9, 4590.
Improving estimation of puma (Puma concolor) population density: clustered camera-trapping, telemetry data, and generalized spatial mark–resight models.Crossref | GoogleScholarGoogle Scholar | 30872785PubMed |

Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., Malcolm, T. R., and Ricketts, T. H. (2008). Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences of the United States of America 105, 9495–9500.
Global mapping of ecosystem services and conservation priorities.Crossref | GoogleScholarGoogle Scholar | 18621701PubMed |

Niedballa, J., Sollmann, R., Courtiol, A., and Wilting, A. (2016). camtrapR: an R package for efficient camera trap data management. Methods in Ecology and Evolution 7, 1457–1462.
camtrapR: an R package for efficient camera trap data management.Crossref | GoogleScholarGoogle Scholar |

Nielsen, C. K., and Woolf, A. (2001). Spatial organization of bobcats (Lynx rufus) in Southern Illinois. American Midland Naturalist 146, 43–52.
Spatial organization of bobcats (Lynx rufus) in Southern Illinois.Crossref | GoogleScholarGoogle Scholar |

Noss, A. J., Gardner, B., Maffei, L., Cuéllar, E., Montaño, R., Romero-Muñoz, A., Sollman, R., and O’Connell, A. F. (2012). Comparison of density estimation methods for mammalpopulations with camera traps in the Kaa-Iya del Gran Chaco landscape. Animal Conservation 15, 527–535.
Comparison of density estimation methods for mammalpopulations with camera traps in the Kaa-Iya del Gran Chaco landscape.Crossref | GoogleScholarGoogle Scholar |

NSOM (2018). ‘National Statistics Office of Mongolia.’ (NSOM: Ulaanbaatar, Mongolia.) Available at http://www.en.nso.mn/ [verified 30 November 2020].

NSOM (2019). ‘National Statistics Office of Mongolia.’ (NSOM: Ulaanbaatar, Mongolia.) Available at http://www.en.nso.mn/ [verified 30 November 2020].

O’Connell, A. F., Nichols, J. D., and Karant, U. K. (Eds) (2010). ‘Camera Traps in Animal Ecology Methods and Analyses.’ (Springer Science and Business Media: New York, NY, USA.)

Pallemaerts, L., Adul Kulu, I. P., Jeffers, K. A., MacDonald, D. W., and Cheyne, S. M. (2019). Bornean clouded leopard minimum home range analysis, Indonesian Borneo. Cat News 70, 32–37.

Pease, B. S., Nielsen, C. K., and Holzmueller, E. J. (2016). Single-camera trap survey designs miss detections: impacts on estimates of occupancy and community metrics. PLoS One 11, e0166689.
Single-camera trap survey designs miss detections: impacts on estimates of occupancy and community metrics.Crossref | GoogleScholarGoogle Scholar | 27902733PubMed |

R Core Team (2015). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Reppucci, J., Gardner, B., and Lucherini, M. (2011). Estimating detection and density of the Andean cat in the high Andes. Journal of Mammalogy 92, 140–147.
Estimating detection and density of the Andean cat in the high Andes.Crossref | GoogleScholarGoogle Scholar |

Rodgers, T. W., Giacalone, J., Heske, E. J., Janečka, J. E., Phillips, C. A., and Schooley, R. (2014). Comparison of noninvasive genetics and camera trapping for estimating population density of ocelots (Leopardus pardalis) on Barro Colorado island, Panama. Tropical Conservation Science 7, 690–705.
Comparison of noninvasive genetics and camera trapping for estimating population density of ocelots (Leopardus pardalis) on Barro Colorado island, Panama.Crossref | GoogleScholarGoogle Scholar |

Ross, S. (2009). Providing an ecological basis for the conservation of the Pallas’s cat (Otocolobus manul). University of Bristol Doctoral Dissertation, University of Bristol, UK.

Ross, S., Munkhtsog, B., and Harris, S. (2012). Determinants of mesocarnivore range use: relative effects of prey and habitat properties on Pallas’s cat home-range size. Journal of Mammalogy 93, 1292–1300.
Determinants of mesocarnivore range use: relative effects of prey and habitat properties on Pallas’s cat home-range size.Crossref | GoogleScholarGoogle Scholar |

Ross, S., Barashkova, A., Kirilyuk, V., and Naidenko, S. (2019a). The behaviour and ecology of the manul. Cat News , 9–13.

Ross, S., Moqanaki, E. M., Baraskova, A., Dhendup, T., Smelanski, I., Naidenko, S., et al. (2019b). Past, present and future threats and conservation needs of Pallas’s cats. Cat News , 46–51.

Ross, S., Barashkova, A., Dhendup, T., Munkhtsog, B., Smelansky, I., Barclay, D., and Moqanaki, E. (2020). Otocolobus manul. The IUCN Red List of Threatened Species 2020, e.T15640A162537635.
Otocolobus manul.Crossref | GoogleScholarGoogle Scholar |

Rovero, F., and Zimmermann, F. (Ed.) (2016). ‘Camera-trapping for Wildlife Research.’ (Pelagic Publishing: Exeter, UK.)

Rovero, F., Zimmermann, F., Berzi, D., and Meeke, P. (2013). Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix Italian Journal of Mammalogy 24, 148–156.
Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications.Crossref | GoogleScholarGoogle Scholar |

Rowcliffe, M. (2014). activity: animal activity statistics. R package version 1.0. Available at http://CRAN.R-project.org/package=activity [verified 30 November 2020].

Royle, J. A., Chandler, R. B., Sollmann, R., and Gardner, B. (Eds) (2013). ‘Spatial Capture–recapture.’ (Academic Press: Oxford. UK.)

Sánchez-Barradas, A., and Villalobos, F. (2020). Species geographical co-occurrence and the effect of Grinnellian and Eltonian niche partitioning: the case of a neotropical felid assemblage. Ecological Research 35, 382–393.
Species geographical co-occurrence and the effect of Grinnellian and Eltonian niche partitioning: the case of a neotropical felid assemblage.Crossref | GoogleScholarGoogle Scholar |

Santos, F., Carbone, C., Wearn, O. R., Rowcliffe, J. M., Espinosa, S., Moreira Lima, M. G., Ahumada, J. A., Sousa Goncalves, A. L., Trevelin, L. C., Alvarez-Loayza, P., Spironello, W. R., Jansen, P. A., Leandro, J., and Peres, C. A. (2019). Prey availability and temporal partitioning modulate felid coexistence in neotropical forests. PLoS One 14, e0213671.
Prey availability and temporal partitioning modulate felid coexistence in neotropical forests.Crossref | GoogleScholarGoogle Scholar | 31869346PubMed |

Sliwa, A., Herbst, M., and Mills, M. G. (2010). Black-footed cats (Felis nigripes) and African wildcats (Felis silvestris): a comparison of two small felids from south african arid lands. In ‘Biology and Conservation of Wild Felids’. (Eds D. W. MacDonald, and A. J. Loveridge.) pp. 537–558. (Oxford University Press: London, UK.)

Sollmann, R., Gardner, B., and Belant, J. L. (2012). How does spatial study design influence density estimates from spatial capture–recapture models? PLoS One 7, e34575.
How does spatial study design influence density estimates from spatial capture–recapture models?Crossref | GoogleScholarGoogle Scholar | 23285226PubMed |

Sun, C. C., Fuller, A. K., and Royle, J. A. (2014). Trap configuration and spacing influences parameter estimates in spatial capture–recapture models. PLoS One 9, e88025.
Trap configuration and spacing influences parameter estimates in spatial capture–recapture models.Crossref | GoogleScholarGoogle Scholar | 25364820PubMed |

Tobler, M. W., and Powell, G. V. N. (2013). Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biological Conservation 159, 109–118.
Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies.Crossref | GoogleScholarGoogle Scholar |

Wegge, P., Pokheral, C. P., and Jnawali, S. R. (2004). Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies. Animal Conservation 7, 251–256.
Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies.Crossref | GoogleScholarGoogle Scholar |

Williams, S. T., Maree, N., Taylor, P., Belmain, S. R., Keith, M., and Swanepoel, L. H. (2018). Predation by small mammalian carnivores in rural agro-ecosystems: an undervalued ecosystem service? Ecosystem Services 30, 362–371.
Predation by small mammalian carnivores in rural agro-ecosystems: an undervalued ecosystem service?Crossref | GoogleScholarGoogle Scholar |