Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Bird community responses to changes in vegetation caused by increasing large mammal populations in the Serengeti woodlands

Ally K. Nkwabi https://orcid.org/0000-0001-5299-0542 A D F , Kris Metzger A B C , Rene Beyers A C , Flora Magige D , Simon A. R. Mduma A C , J. Grant C. Hopcraft A E and Anthony R. E. Sinclair A C
+ Author Affiliations
- Author Affiliations

A Serengeti Biodiversity Program, Tanzania Wildlife Research Institute, PO Box 661, Arusha, Tanzania.

B United States Fish and Wildlife Service, Albuquerque, NM 87102, USA.

C Beaty Biodiversity Centre, University of British Columbia, Vancouver V6T 1Z4, Canada.

D University of Dar es Salaam, Department of Zoology and Wildlife Conservation, PO Box 35064, Dar es Salaam, Tanzania.

E Boyd Orr Centre for Population and Ecosystem Health; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.

F Corresponding author. Email: ally.nkwabi@tawiri.or.tz

Wildlife Research 46(3) 256-264 https://doi.org/10.1071/WR18001
Submitted: 3 January 2018  Accepted: 9 February 2019   Published: 3 May 2019

Abstract

Context: The increase in density of large tree species, Vachellia robusta and V. tortilis, in the Serengeti Ecosystem of Tanzania has resulted in a decline of small tree species Senegalia senegal, V. hockii, Commiphora spp. This change has occurred since the late 1970s, a consequence of an increase in wildebeest following the extirpation of rinderpest, which reduced the dry grass fuel for fires, resulting in low fire frequencies. Change in tree species raises the question of whether there are indirect consequences for the avifauna that depend on the large trees for food and nesting.

Aims: To determine how an increase in large mammals could influence diversity and distribution of avifauna communities in the Serengeti ecosystem woodlands.

Methods: Data used to estimate changes in density of large and small trees were measured by Point Centre Quarter (PCQ). Bird species were recorded in 19 small-tree sites and 18 large-tree sites in the Serengeti National Park. Richness of bird guilds was calculated in the two habitat complexes (small and large trees), and the ‘rarefaction’ method was used to assess the difference in richness in habitats of the study area. Mean abundance for each species was calculated over the total number of sites for each habitat and compared using the Wilcoxon Rank Sum test to examine how the abundance of avifauna changes with each habitat type.

Key results: There was an increase in the density of large trees in some areas in which they have replaced the original small trees. Such changes have resulted in greater richness of hole nesters and bark feeders, and a greater abundance of large-hole nesters and gleaner bird species.

Conclusions: Because the increase in tree density was caused by an increase in large mammals, we conclude that this increasing mammal population is indirectly increasing richness and abundance of birds using the trees.

Implications: Understanding the influence of large mammal populations on bird distributions has important conservation implications because the Serengeti ecosystem is classified as an important, endemic bird area.

Additional keywords: abundance of birds, distribution, disturbance, large mammals, tree density.


References

Baumann, O. (1968). ‘Through Maasai to the source of the Nile.’ (Johnson Reprint Corporation: New York.)

Bibby, C. J., Burgess, N. D., Hill, D. A., and Mustoe, S. (2000). ‘Bird Census Techniques,’ 2nd edn. (Academic Press: London.)

Caston, M., and Samantha, M. (2014). Effect of habitat structure on avian diversity and distribution: the case of main camp, Hwange National Park, Zimbabwe. Journal of Biodiversity and Environmental Sciences. 4, 90–108.

Dobson, A. (1995). The ecology and epidemiology of rinderpest virus in Serengeti and Ngorongoro Conservation Area. In ‘Serengeti II: Dynamics, Management and Conservation of an Ecosystem’. (Eds A. R. E. Sinclair and P. Arcese.) pp. 485–505. (University of Chicago Press: Chicago, IL.)

Dublin, H. T. (1995). Vegetation dynamics in the Serengeti–Mara ecosystem: the role of elephants, fire and other factors. In ‘Serengeti II: Dynamics, Management and Conservation of an Ecosystem’. (Eds A. R. E. Sinclair and P. Arcese.) pp. 71–90. (University of Chicago Press: Chicago, IL.)

Dublin, H. T., Sinclair, A. R. E., and McGlade, J. (1990). Elephants and fire as causes of multiple stable states in the Serengeti–Mara woodlands. Journal of Animal Ecology 59, 1147–1164.
Elephants and fire as causes of multiple stable states in the Serengeti–Mara woodlands.Crossref | GoogleScholarGoogle Scholar |

Eby, S., Demperwolf, J., Holdo, R. M., and Metzger, K. L. (2015). Fire in the Serengeti ecosystem: history, drivers and consequences. In ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 33–72. (University of Chicago Press: Chicago, IL.)

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., and Jackson, J. B. (2011). Trophic downgrading of planet Earth. Science 333, 301–306.
Trophic downgrading of planet Earth.Crossref | GoogleScholarGoogle Scholar | 21764740PubMed |

Ford, J. (1971). ‘The role of Trypanosomiases in African Ecology.’ (Clarendon Press: Oxford, UK.)

Fry, C. H., and Keith, S. (2004). ‘The Birds of Africa. Volume VII. Sparrows to Buntings.’ (Christopher Helm: London.)

Fry, C. H., Keith, S., and Urban, E. K. (2000). ‘The Birds of Africa. Volume VI. Picathartes to Oxpeckers.’ (Academic Press: San Diego, CA.)

Gonnet, J. M. (2001). Influence of cattle grazing on population density and species richness of granivorous birds (Emberizidae) in the arid plain of the Monte, Argentina. Journal of Arid Environments 48, 569–579.
Influence of cattle grazing on population density and species richness of granivorous birds (Emberizidae) in the arid plain of the Monte, Argentina.Crossref | GoogleScholarGoogle Scholar |

Gottschalk, T. K., Ekschmitt, K., and Bairlein, F. (2007). Relationships between vegetation and bird community composition in grasslands of the Serengeti. African Journal of Ecology 45, 557–565.
Relationships between vegetation and bird community composition in grasslands of the Serengeti.Crossref | GoogleScholarGoogle Scholar |

Herlocker, D. J. (1974). Map of Woody vegetation of the Serengeti National Park, Tanzania. Caesar Kleberg Research Program, Texas A & M University, College Station, TX.

Herlocker, D. J. (1976). Structure, composition and environment of some woodland vegetation types of the Serengeti National Park, Tanzania. Ph.D. Thesis, Texas A&M University, College Station, TX.

Herremans, M. (1995). Effects of woodland modification by African elephant Loxodontaafricana on bird diversity in northern Botswana. Ecography 18, 440–454.
Effects of woodland modification by African elephant Loxodontaafricana on bird diversity in northern Botswana.Crossref | GoogleScholarGoogle Scholar |

Hobbs, N. T. (1996). Modification of ecosystems by ungulates. The Journal of Wildlife Management 60, 695–713.
Modification of ecosystems by ungulates.Crossref | GoogleScholarGoogle Scholar |

Holdo, R. M., Sinclair, A. R., Dobson, A. P., Metzger, K. L., Bolker, B. M., Ritchie, M. E., and Holt, R. D. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem. PLOS 7, e1000210.
A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem.Crossref | GoogleScholarGoogle Scholar |

Hopcraft, J. G. C., Holdo, R. M., Mwangomo, E., Mduma, S. A. R., Thirgood, S. J., Borner, M., Fryxell, J. M., Olff, H., and Sinclair, A. R. E. (2015). Why are wildebeest the most abundant herbivore in the Serengeti ecosystem? In ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 125–174. (University of Chicago Press: Chicago, IL.)

Jankowski, J. E., Sinclair, A. R. E., and Metzger, K. L. (2015). Bird diversity of the greater Serengeti ecosystem: spatial patterns of taxonomic and functional richness and turnover. In ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human-natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, S. A. R. Mduma and J. Fryxell.) pp. 359–393. (University of Chicago Press: Chicago, IL.)

Keesing, F. (2000). Cryptic consumers and the ecology of an African savanna. American Institute of Biological Sciences Bulletin 50, 205–215.

Krebs, C. J. (2001). ‘Ecological Methodology.’ (Harper and Row: New York.)

Krebs, C. J. (2009). ‘Programs for Ecological Methodology’, version 7.1 (Exeter Software: Exeter, UK.)

McNaughton, S. (1985). Ecology of a grazing ecosystem: the Serengeti. Ecological Monographs 55, 259–294.
Ecology of a grazing ecosystem: the Serengeti.Crossref | GoogleScholarGoogle Scholar |

McNaughton, S. J., and Campbell, K. (1991). Long term ecological research in African ecosystems. In ‘Long Term Ecological Research’. (Ed. P. G. Risses.) pp. 173–189. (John Wiley and Sons: Chichester, UK.)

Mduma, S. A. R., Sinclair, A., and Hilborn, R. (1999). Food regulates the Serengeti wildebeest: a 40‐year record. Journal of Animal Ecology 68, 1101–1122.
Food regulates the Serengeti wildebeest: a 40‐year record.Crossref | GoogleScholarGoogle Scholar |

Metzger, K. L., Sinclair, A. R. E., Macfarlane, A., Coughenour, M. B., and Ding, J. (2015). Scales of change in the greater Serengeti ecosystem. In ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 33–72. (Chicago University Press: Chicago, IL.)

Moser, B. W., and Witmer, G. W. (2000). The effects of elk and cattle foraging on the vegetation, birds, and small mammals of the Bridge Creek Wildlife Area, Oregon. International Biodeterioration & Biodegradation 45, 151–157.
The effects of elk and cattle foraging on the vegetation, birds, and small mammals of the Bridge Creek Wildlife Area, Oregon.Crossref | GoogleScholarGoogle Scholar |

Nkwabi, A. K., Sinclair, A. R. E., Metzger, K. L., and Mduma, S. A. R. (2011). Disturbance, species loss and compensation: wildfire and grazing effects on the avian community and its food supply in the Serengeti ecosystem, Tanzania. Austral Ecology 36, 403–412.
Disturbance, species loss and compensation: wildfire and grazing effects on the avian community and its food supply in the Serengeti ecosystem, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Norton-Griffiths, M., Herlocker, D., and Pennycuick, L. (1975). The patterns of rainfall in the Serengeti ecosystem, Tanzania. African Journal of Ecology 13, 347–374.
The patterns of rainfall in the Serengeti ecosystem, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Ogada, D. L., Gadd, M. E., Ostfeld, R. S., Young, T. P., and Keesing, F. (2008). Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna. Oecologia 156, 387–397.
Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna.Crossref | GoogleScholarGoogle Scholar | 18288493PubMed |

Olff, H., and Ritchie, M. E. (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution 13, 261–265.
Effects of herbivores on grassland plant diversity.Crossref | GoogleScholarGoogle Scholar |

Pankhurst, R. (1966a). The Great Ethiopian Famine of 1888–1892: a new assessment. Part two. Journal of the History of Medicine and Allied Sciences 21, 271–294.
The Great Ethiopian Famine of 1888–1892: a new assessment. Part two.Crossref | GoogleScholarGoogle Scholar |

Pankhurst, R. (1966b). The Great Ethiopian Famine of 1888–1892: a new assessment. Part one. Journal of the History of Medicine and Allied Sciences 21, 95–124.
The Great Ethiopian Famine of 1888–1892: a new assessment. Part one.Crossref | GoogleScholarGoogle Scholar | 5326887PubMed |

Plowright, W. (1982). The effects of rinderpest and rinderpest control on wildlife in Africa. Symposium of the Zoological Society, London. 50, 1–28.

Pomeroy, D. E. (1992). ‘Counting Birds.’ (African Wildlife Foundation: Nairobi.)

Rooney, N., and McCann, K. S. (2012). Integrating food web diversity, structure and stability. Trends in Ecology & Evolution 27, 40–46.
Integrating food web diversity, structure and stability.Crossref | GoogleScholarGoogle Scholar |

Roques, K. G., O’connor, T. G., and Watkinson, A. R. (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology 38, 268–280.
Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence.Crossref | GoogleScholarGoogle Scholar |

Rudolf, V. H. W., and Lafferty, K. D. (2011). Stage structure alters how complexity affects stability of ecological networks. Ecology Letters 14, 75–79.
Stage structure alters how complexity affects stability of ecological networks.Crossref | GoogleScholarGoogle Scholar |

Salvatori, V., Egunyu, F., Skidmore, A., De Leeuw, J., and Van Gils, H. (2001). The effects of fire and grazing pressure on vegetation cover and small mammal populations in the Maasai Mara National Reserve. African Journal of Ecology 39, 200–204.
The effects of fire and grazing pressure on vegetation cover and small mammal populations in the Maasai Mara National Reserve.Crossref | GoogleScholarGoogle Scholar |

Sinclair, A. R. E. (1977). ‘The African Buffalo.’ (University of Chicago Press: Chicago, IL.)

Sinclair, A. R. E. (1995). Serengeti past and present. In ‘Serengeti II: Dynamics, Management, and Conservation of an Ecosystem’. (Eds A. R. E. Sinclair and P. Arcese.) pp. 3–30. (University of Chicago Press: Chicago, IL.)

Sinclair, A. R. E. (2003). The role of mammals as ecosystem landscapers. Alces 39, 161–177.

Sinclair, A. R. E. (2012). Ecological history guides the future of conservation: lessons from Africa. In ‘Historical Environmental Variation in Conservation and Natural Resource Management’. (Eds J. A. Wiens, G. D. Hayward, H. D. Safford and C. M. Giffen.) pp. 265–272. (Wiley-Blackwell: Oxford, UK.)

Sinclair, A. R. E., and Norton-Griffiths, M. (1979). ‘Serengeti: Dynamics of an Ecosystem.’ (University of Chicago Press: Chicago, IL.)

Sinclair, A. R. E., Mduma, S. A. R., Hopcraft, J. G. C., Fryxell, J. M., Hilborn, R., and Thirgood, S. (2007). Long‐term ecosystem dynamics in the Serengeti: lessons for conservation. Conservation Biology 21, 580–590.
Long‐term ecosystem dynamics in the Serengeti: lessons for conservation.Crossref | GoogleScholarGoogle Scholar |

Sinclair, A. R. E., Hopcraft, J. G. C., Olff, H., Mduma, S. A. R., Galvin, K. A., and Sharam, G. J. (2008). Historical and future changes to the Serengeti ecosystem. In ‘Serengeti III: Human Impacts on Ecosystem Dynamics’. (Eds A. R. E. Sinclair, C. Packer, S. A. R. Mduma and J. M. Fryxell.) pp. 7–46. (University of Chicago Press: Chicago, IL.)

Sinclair, A. R. E., Dobson, A., Mduma, S. A. R., and Metzger, K. L. (2015). Shaping the Serengeti ecosystem. In ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 11–29. (University of Chicago Press: Chicago, IL.)

Spinage, C. A. (2003). ‘Cattle Plague, a History.’ (Kluwer Academic/Plenum Press: Dordrecht.)

Stattersfield, A. J., Crosby, M. J., Long, A. J., and Wege, D. C. (1998). ‘Endemic Bird Areas of the World.’ (Fishpool and Evans: Cambridge, UK.)

Talbot, L. M., and Talbot, M. H. (1963). The wildebeest in western Masailand. Wildlife Monographs 12, 3–88.

Temple, S. A., Fevold, B. M., Paine, L. K., Undersander, D. J., and Sample, D. W. (1999). Nesting birds and grazing cattle: accommodating both on Midwestern pastures. Studies in Avian Biology 19, 196–202.

Terborgh, J., and Estes, J. A. (2010). ‘Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature.’ (Island Press: Washington, DC.)

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., and Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31, 79–92.
Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures.Crossref | GoogleScholarGoogle Scholar |

Werema, C., Nahonyo, C. L., and Kibaja, M. (2017). The role of kopjes in bird species’ conservation within an agricultural matrix west of the Greater Serengeti Ecosystem, Tanzania. Scopus. 37, 8–23.

Young, T. P., Palmer, T. M., and Gadd, M. E. (2005). Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biological Conservation 122, 351–359.
Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya.Crossref | GoogleScholarGoogle Scholar |