Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

The influence of the delay-period setting on camera-trap data storage, wildlife detections and occupancy models

Clara C. Lepard https://orcid.org/0000-0002-6481-1166 A G , Remington J. Moll A , Jonathon D. Cepek B , Patrick D. Lorch C , Patricia M. Dennis D E , Terry Robison F and Robert A. Montgomery A
+ Author Affiliations
- Author Affiliations

A The Research on the Ecology of Carnivores and their Prey Laboratory, Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, Room 13 Natural Resources Building, East Lansing, MI 48824, USA.

B Natural Resources, Cleveland Metroparks, 9485 Eastland Road, Strongsville, OH 44149, USA.

C Natural Resources, Cleveland Metroparks, 2277 West Ridgewood Drive, Parma, OH 44134, USA.

D Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, OH 44109, USA.

E Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA.

F Department of Planning, Design, and Natural Resources, Cleveland Metroparks, 4500 Valley Parkway, Fairview Park, OH 44126, USA.

G Corresponding author. Email: lepardcl@msu.edu

Wildlife Research 46(1) 37-53 https://doi.org/10.1071/WR17181
Submitted: 14 December 2017  Accepted: 15 October 2018   Published: 21 December 2018

Abstract

Context: The use of camera traps in ecological research has grown exponentially over the past decade, but questions remain about the effect of camera-trap settings on ecological inference. The delay-period setting controls the amount of time that a camera trap is idle between motion-activated triggers. Longer delay periods may potentially extend battery life, reduce data-storage requirements, and shorten data-analysis time. However, they might result in lost data (i.e. missed wildlife detections), which could bias ecological inference and compromise research objectives.

Aims: We aimed to examine the effect of the delay period on (1) the number of camera-trap triggers, (2) detection and site-occupancy probabilities for eight mammalian species that varied in size, movement rate and commonness and (3) parameter estimates of habitat-based covariates from the occupancy models for these species.

Methods: We deployed 104 camera traps for 4 months throughout an extensive urban park system in Cleveland, Ohio, USA, using a spatially random design. Using the resultant data, we simulated delay periods ranging from 10 s to 60 min. For each of these delay periods and for each of our eight focal species, we calculated the number of camera-trap triggers and the parameter estimates of hierarchical Bayesian occupancy models.

Key results: A simulated increase in the delay period from 10 s to 10 min decreased the number of triggers by 79.6%, and decreased detection probability and occupancy probability across all species by 1.6% and 4.4% respectively. Further increases in the delay period (i.e. from 10 to 60 min) resulted in modest additional reductions in the number of triggers and detection and occupancy probabilities. Variation in the delay period had negligible effects on the qualitative interpretations of habitat-based occupancy models for all eight species.

Conclusions: Our results suggest that delay-period settings ranging from 5 to 10 min can drastically reduce data-storage needs and analysis time without compromising inference resulting from occupancy modelling for a diversity of mammalian species.

Implications: Broadly, we provide guidance on designing camera-trap studies that optimally trade-off research effort and potential bias, thereby increasing the utility of camera traps as ecological research tools.

Additional keywords: data management, study design, urban ecology, wildlife monitoring.


References

Ahumada, J. A., Silva, C. E. F., Gajapersad, K., Hallam, C., Hurtado, J., Martin, E., McWilliam, A., Mugerwa, B., O’Brien, T., Rovero, F., Sheil, D., Spironello, W. R., Winarni, N., and Andelman, S. J. (2011). Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 2703–2711.
Community structure and diversity of tropical forest mammals: data from a global camera trap network.Crossref | GoogleScholarGoogle Scholar |

Bradley, C. A., and Altizer, S. (2007). Urbanization and the ecology of wildlife diseases. Trends in Ecology & Evolution 22, 95–102.
Urbanization and the ecology of wildlife diseases.Crossref | GoogleScholarGoogle Scholar |

Brown, M. B., Schlacher, T. A., Schoeman, D. S., Weston, M. A., Huijbers, C. M., Olds, A. D., and Connolly, R. M. (2015). Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches. Ecology 96, 2715–2725.
Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches.Crossref | GoogleScholarGoogle Scholar |

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., and Boutin, S. (2015). Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52, 675–685.
Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes.Crossref | GoogleScholarGoogle Scholar |

Caravaggi, A., Zaccaroni, M., Riga, F., Schai-Braun, S. C., Dick, J. T. A., Montgomery, W. I., and Reid, N. (2016). An invasive-native mammalian species replacement process captured by camera trap survey random encounter models. Remote Sensing in Ecology and Conservation 2, 45–58.
An invasive-native mammalian species replacement process captured by camera trap survey random encounter models.Crossref | GoogleScholarGoogle Scholar |

Cribari-Neto, F., and Zeileis, A. (2009). Beta regression in R. Journal of Statistical Software 34, 1–24.

du Preez, B. D., Loveridge, A. J., and Macdonald, D. W. (2014). To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation 176, 153–161.
To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density.Crossref | GoogleScholarGoogle Scholar |

Elizondo, E. C., and Loss, S. R. (2016). Using trail cameras to estimate free-ranging domestic cat abundance in urban areas. Wildlife Biology 22, 246–252.
Using trail cameras to estimate free-ranging domestic cat abundance in urban areas.Crossref | GoogleScholarGoogle Scholar |

Fidino, M. A., Lehrer, E. W., and Seth, B. (2016). Habitat dynamics of the Virginia opossum in a highly urban landscape. American Midland Naturalist 175, 155–167.
Habitat dynamics of the Virginia opossum in a highly urban landscape.Crossref | GoogleScholarGoogle Scholar |

Frid, A., and Dill, L. (2002). Human-caused disturbance stimuli as a form of predation risk. Conservation Ecology 6, 11.

Fuller, A. K., Linden, D. W., and Royle, J. A. (2016). Management decision making for fisher populations informed by occupancy modeling. The Journal of Wildlife Management 80, 794–802.
Management decision making for fisher populations informed by occupancy modeling.Crossref | GoogleScholarGoogle Scholar |

Gálvez, N., Guillera-Arroita, G., Morgan, B. J. T., and Davies, Z. G. (2016). Cost-efficient effort allocation for camera-trap occupancy surveys of mammals. Biological Conservation 204, 350–359.
Cost-efficient effort allocation for camera-trap occupancy surveys of mammals.Crossref | GoogleScholarGoogle Scholar |

Gelman, A., and Hill, J. (2007). ‘Data analysis using regression and multilevel/hierarchical models.’ (Cambridge University Press: New York, NY.)

Hamel, S., Killengreen, S. T., Henden, J.-A., Eide, N. E., Roed-Eriksen, L., Ims, R. A., and Yoccoz, N. G. (2013). Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods in Ecology and Evolution 4, 105–113.
Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences.Crossref | GoogleScholarGoogle Scholar |

Harris, G., Thompson, R., Childs, J. L., and Sanderson, J. G. (2010). Automatic storage and analysis of camera trap data. Bulletin of the Ecological Society of America 91, 352–360.
Automatic storage and analysis of camera trap data.Crossref | GoogleScholarGoogle Scholar |

Kays, R. W., and Slauson, K. M. (2008). Remote cameras. In ‘Noninvasive survey methods for carnivores’. (Eds R. A. Long, P. MacKay and J. Ray.) pp. 110–140. (Island Press: Washington, DC.)

Kays, R., Costello, R., Forrester, T., Baker, M. C., Parsons, A. W., Kalies, E. L., Hess, G., Millspaugh, J. J., and McShea, W. (2015). Cats are rare where coyotes roam. Journal of Mammalogy 96, 981–987.
Cats are rare where coyotes roam.Crossref | GoogleScholarGoogle Scholar |

Kays, R., Parsons, A. W., Baker, M. C., Kalies, E. L., Forrester, T., Costello, R., Rota, C. T., Millspaugh, J. J., and McShea, W. J. (2017). Does hunting or hiking affect wildlife communities in protected areas? Journal of Applied Ecology 54, 242–252.
Does hunting or hiking affect wildlife communities in protected areas?Crossref | GoogleScholarGoogle Scholar |

Kendall, W. L., and White, G. C. (2009). A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. Journal of Applied Ecology 46, 1182–1188.

Kéry, M. (2010). ‘Introduction to WinBUGS for Ecologists: a Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses.’ (Academic Press: San Diego, CA.)

Kéry, M., and Schaub, M. (2012). ‘Bayesian Population Analysis using WinBUGS: a Hierarchical Perspective.’ (Academic Press: San Diego, CA.)

Kilshaw, K., Montgomery, R. A., Campbell, R. D., Hetherington, D. A., Johnson, P. J., Kitchener, A. C., Macdonald, D. W., and Millspaugh, J. J. (2015). Mapping the spatial configuration of hybridization risk for an endangered population of the European wildcat (Felis silvestris silvestris) in Scotland. Mammal Research 61, 1–11.
Mapping the spatial configuration of hybridization risk for an endangered population of the European wildcat (Felis silvestris silvestris) in Scotland.Crossref | GoogleScholarGoogle Scholar |

Kuijper, D. P. J., Bubnicki, J. W., Churski, M., Mols, B., and van Hooft, P. (2015). Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest. Behavioral Ecology 26, 1558–1568.
Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest.Crossref | GoogleScholarGoogle Scholar |

Linkie, M., Guillera-Arroita, G., Smith, J., Ario, A., Bertagnolio, G., Cheong, F., Clements, G. R., Dinata, Y., Duangchantrasiri, S., Fredriksson, G., Gumal, M. T., Horng, L. S., Kawanishi, K., Khakim, F. R., Kinnaird, M. F., Kiswayadi, D., Lubis, A. H., Lynam, A. J., Maryati, , Maung, M., Ngoprasert, D., Novarino, W., O’Brien, T. G., Parakkasi, K., Peters, H., Priatna, D., Rayan, D. M., Seuaturien, N., Shwe, N. M., Steinmetz, R., Sugesti, A. M., Sunarto, , Sunquist, M. E., Umponjan, M., Wibisono, H. T, Wong, C. C. T., and Zulfahmi, (2013). Cryptic mammals caught on camera: assessing the utility of range wide camera trap data for conserving the endangered Asian tapir. Biological Conservation 162, 107–115.
Cryptic mammals caught on camera: assessing the utility of range wide camera trap data for conserving the endangered Asian tapir.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., and Royle, J. A. (2005). Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42, 1105–1114.
Designing occupancy studies: general advice and allocating survey effort.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Estimating site occupancy rates when detection probabilities are less than one.Crossref | GoogleScholarGoogle Scholar |

McCallum, J. (2012). Changing use of camera traps in mammalian field research: habitats, taxa and study types. Mammal Review 43, 196–206.
Changing use of camera traps in mammalian field research: habitats, taxa and study types.Crossref | GoogleScholarGoogle Scholar |

Meek, P. D., Ballard, G., Claridge, A., Kays, R., Moseby, K., O’Brien, T., O’Connell, A., Sanderson, J., Swann, D. E., Tobler, M., and Townsend, S. (2014). Recommended guiding principles for reporting on camera trapping research. Biodiversity and Conservation 23, 2321–2343.
Recommended guiding principles for reporting on camera trapping research.Crossref | GoogleScholarGoogle Scholar |

Moll, R. J., Kilshaw, K., Montgomery, R. A., Abade, L., Campbell, R. D., Harrington, L. A., Millspaugh, J. J., Birks, J. D. S., and Macdonald, D. W. (2016). Clarifying habitat niche width using broad-scale, hierarchical occupancy models: a case study with a recovering mesocarnivore. Journal of Zoology 300, 177–185.
Clarifying habitat niche width using broad-scale, hierarchical occupancy models: a case study with a recovering mesocarnivore.Crossref | GoogleScholarGoogle Scholar |

Newey, S., Davidson, P., Nazir, S., Fairhurst, G., Verdicchio, F., Irvine, R. J., and van der Wal, R. (2015). Limitations of recreational camera traps for wildlife management and conservation research: a practitioner’s perspective. Ambio 44, 624–635.
Limitations of recreational camera traps for wildlife management and conservation research: a practitioner’s perspective.Crossref | GoogleScholarGoogle Scholar |

Nichols, J. D., Karanth, K. U., and O’Connell, A. F. (2011). Science, conservation, and camera traps. In ‘Camera Traps in Animal Ecology Methods and Analyses’. (Eds A. F. O’Connell, J. D. Nichols, and K. U. Karanth.) pp. 45–56. (Springer Japan: Tokyo.)

Niedballa, J., Sollmann, R., Courtiol, A., and Wilting, A. (2016). camtrapR: an R package for efficient camera trap data management. Methods in Ecology and Evolution 7, 1457–1462.
camtrapR: an R package for efficient camera trap data management.Crossref | GoogleScholarGoogle Scholar |

O’Connell, A. F., Nichols, J. D., and Karanth, K. U. (Eds) (2011). ‘Camera Traps in Animal Ecology: Methods and Analyses.’ (Springer Japan: Tokyo.)

Parsons, A. W., Bland, C., Forrester, T., Baker-Whatton, M. C., Schuttler, S. G., McShea, W. J., Costello, R., and Kays, R. (2016). The ecological impact of humans and dogs on wildlife in protected areas in eastern North America. Biological Conservation 203, 75–88.
The ecological impact of humans and dogs on wildlife in protected areas in eastern North America.Crossref | GoogleScholarGoogle Scholar |

Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In ‘Proceedings of the 3rd International Workshop on Distributed Statistical Computing’ 20–22 March 2003, Technische Universität, Vienna, Austria. (Eds K. Hornik, F. Leisch, A. Zeileis) pp. 1–8. (Achim Zeileis: Innsbruck, Austria.)

Racey, G. D., and Euler, D. L. (1983). Changes in mink habitat and food selection as influenced by cottage development in central Ontario. Journal of Applied Ecology 20, 387–401.
Changes in mink habitat and food selection as influenced by cottage development in central Ontario.Crossref | GoogleScholarGoogle Scholar |

Rhodes, J. R., McAlpine, C. A., Zuur, A. F., Smith, G. M., and Ieno, E. N. (2009). GLMM applied on the spatial distribution of koalas in a fragmented landscape. In ‘Mixed Effects Models and Extensions in Ecology with R’. pp. 469–492. (Springer: New York, NY.)

Rich, L. N., Miller, D. A. W., Robinson, H. S., McNutt, J. W., and Kelly, M. J. (2016). Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. Journal of Applied Ecology 53, 1225–1235.
Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community.Crossref | GoogleScholarGoogle Scholar |

Rota, C. T., Ferreira, M. A. R., Kays, R. W., Forrester, T. D., Kalies, E. L., McShea, W. J., Parsons, A. W., and Millspaugh, J. J. (2016). A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution 7, 1164–1173.
A multispecies occupancy model for two or more interacting species.Crossref | GoogleScholarGoogle Scholar |

Rovero, F., Tobler, M., and Sanderson, J. (2010). Camera trapping for inventorying terrestrial vertebrates. In ‘Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories and Monitoring’. (Eds J. Eymann, J. Degreef, C. Häuser, J. C. Monje, Y. Samyn, and D. VandenSpiegel.) pp. 100–128. (The Belgian National Focal Point to the Global Taxonomy Initiative: Brussels.)

Rowcliffe, J. M., Carbone, C., Jansen, P. A., Kays, R., and Kranstauber, B. (2011). Quantifying the sensitivity of camera traps: an adapted distance sampling approach. Methods in Ecology and Evolution 2, 464–476.
Quantifying the sensitivity of camera traps: an adapted distance sampling approach.Crossref | GoogleScholarGoogle Scholar |

Ruiz-Gutiérrez, V., Zipkin, E. F., and Dhondt, A. A. (2010). Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species. Journal of Applied Ecology 47, 621–630.
Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species.Crossref | GoogleScholarGoogle Scholar |

Schuette, P., Wagner, A. P., Wagner, M. E., and Creel, S. (2013). Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biological Conservation 158, 301–312.
Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures.Crossref | GoogleScholarGoogle Scholar |

Schuttler, S. G., Parsons, A. W., Forrester, T. D., Baker, M. C., McShea, W. J., Costello, R., and Kays, R. (2016). Deer on the lookout: how hunting, hiking, and coyotes affect white-tailed deer vigilance. Journal of Zoology 301, 320–327.

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., Townsend, S. E., Carbone, C., Rowcliffe, J. M., Whittington, J., Brodie, J., Royle, J. A., Switalski, A., Clevenger, A. P., Heim, N., and Rich, L. N. (2017). Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment 15, 26–34.
Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors.Crossref | GoogleScholarGoogle Scholar |

Stevens, D. L., and Olsen, A. R. (2003). Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14, 593–610.
Variance estimation for spatially balanced samples of environmental resources.Crossref | GoogleScholarGoogle Scholar |

Tobler, M. W., Carrillo-Percastegui, S. E., Leite Pitman, R., Mares, R., and Powell, G. (2008). An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation 11, 169–178.
An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals.Crossref | GoogleScholarGoogle Scholar |

Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., and Possingham, H. P. (2003). Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications 13, 1790–1801.
Improving precision and reducing bias in biological surveys: estimating false-negative error rates.Crossref | GoogleScholarGoogle Scholar |

van der Wal, R., Zeng, C., Heptinstall, D., Ponnamperuma, K., Mellish, C., Ben, S., and Siddharthan, A. (2015). Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: a case study of reintroduced red kites. Ambio 44, 612–623.
Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: a case study of reintroduced red kites.Crossref | GoogleScholarGoogle Scholar |

Wang, Y., Allen, M. L., and Wilmers, C. C. (2015). Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biological Conservation 190, 23–33.
Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California.Crossref | GoogleScholarGoogle Scholar |

Weckel, M. E., Mack, D., Nagy, C., Christie, R., and Wincorn, A. (2010). Using citizen science to map human–coyote interaction in suburban New York, USA. The Journal of Wildlife Management 74, 1163–1171.
Using citizen science to map human–coyote interaction in suburban New York, USA.Crossref | GoogleScholarGoogle Scholar |

Xian, G., Homer, C., Dewitz, J., Fry, J., Hossain, N., and Wickham, J. (2011). The change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogrammetric Engineering and Remote Sensing 77, 754–762.