Biodiversity assessment: selecting sampling techniques to access anuran diversity in grassland ecosystems
B. Madalozzo A C , T. G. Santos B , M. B. Santos A , C. Both A and S. Cechin AA Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Camobi, RS 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
B Universidade Federal do Pampa, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil.
C Corresponding author. Email: bmadal@gmail.com
Wildlife Research 44(1) 78-91 https://doi.org/10.1071/WR16086
Submitted: 16 May 2016 Accepted: 20 January 2017 Published: 3 March 2017
Abstract
Context: Species richness is a relevant diversity component of community ecology and many standardised techniques are available for data estimations. However, each technique is appropriate to a few environment types and has its own sampling biases. Thus, it is necessary to test the effectiveness of traditional and heterodox sampling techniques in different habitat types, especially for highly diverse taxonomic groups, such as anurans.
Aims: We present a comparison based on species richness and detection between the following techniques: acoustic survey with visual encounter of adults (ASVE), automated digital recorders (ADR) and dip net survey of larvae (DSL). We sought to determine: (1) the most efficient sampling technique to survey species richness in ponds of grasslands habitats; and (2) whether efficiency is related to the particular life history traits of species.
Methods: During 2014 and 2015, we sampled 47 ponds distributed in vulnerable Brazilian grassland areas using ASVE, ADR and DSL. Anuran species were surveyed across two seasons that coincide with the peak of anuran breeding activity in the region.
Key results: Species richness recorded by ADR and ASVE was higher when compared with DSL. In terms of combined utilisation, ADR with DSL was as efficient as using all techniques together. However, species detection differed among sampling techniques. ADR had the higher percentage of species that were sampled exclusively in at least one breeding pond and DSL detected two species that were not detected by the other techniques.
Conclusions: Our findings suggest that ADR includes most species whose males call for only a few hours during the night or day, and DSL exclusively detects ‘explosive breeders’, incorporating a wide range of life history traits. ASVE becomes unnecessary since it does not include specific variations of species’ calling behaviour. It is susceptible to a discrepancy of survey data among observers and potentially causes a human disturbance effect in the estimated data.
Implications: We strongly recommended the use of ADR rather than ASVE, and we recommended DSL as a supplementary technique for population monitoring and surveys in grassland areas. We encourage researchers to include ADR and DSL in future works to survey biologic data outside of the short sampling event for which ASVE is commonly utilised, thereby improving the interpretation of biological patterns.
Additional keywords: amphibians, automated recorders, breeding ponds, calling males, survey methods, tadpoles.
References
Acevedo, M. A., and Villanueva-Rivera, L. J. (2006). Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildlife Society Bulletin 34, 211–214.| Using automated digital recording systems as effective tools for the monitoring of birds and amphibians.Crossref | GoogleScholarGoogle Scholar |
Acevedo, M. A., Corrada-Bravo, C. J., Corrada-Bravo, H., Villanueva-Rivera, L. J., and Aide, T. M. (2009). Automated classification of bird and amphibian calls using machine learning: a comparison of methods. Ecological Informatics 4, 206–214.
| Automated classification of bird and amphibian calls using machine learning: a comparison of methods.Crossref | GoogleScholarGoogle Scholar |
Almeida-Gomes, M., Van Sluys, M., and Rocha, C. F. D. (2007a). Calling activity of Crossodactylus gaudichaudii (Anura: Hylodidae) in an Atlantic Rainforest area at Ilha Grande, Rio de Janeiro, Brazil. Belgian Journal of Zoology 137, 203–207.
Almeida-Gomes, M., Van Sluys, M., Rocha, C. F. D., and Frederico, C. (2007b). Ecological observations on the leaf-litter frog Adenomera marmorata in an Atlantic rainforest area of southeastern Brazil. The Herpetological Journal 17, 81–85.
Ávila, R. W., and Ferreira, V. L. (2004). Richness of species and density of vocalization of anurans in an urban area of Corumbá, Mato Grosso do Sul, Brazil. Revista Brasileira de Zoologia 21, 887–892.
Bardier, C., Canavero, A., and Maneyro, R. (2014). Temporal and spatial activity patterns of three species in the Leptodactylus fuscus group (Amphibia, Leptodactylidae). The American Biology Teacher 9, 106–113.
Bertoluci, J. (1998). Annual patterns of breeding activity in Atlantic Rainforest anurans. Journal of Herpetology 32, 607–611.
| Annual patterns of breeding activity in Atlantic Rainforest anurans.Crossref | GoogleScholarGoogle Scholar |
Blanchet, F. G., Legendre, P., and Borcard, D. (2008). Forward selection of explanatory variables. Ecology 89, 2623–2632.
| Forward selection of explanatory variables.Crossref | GoogleScholarGoogle Scholar |
Boldrini, I. I. (2009). A flora dos campos do Rio Grande do Sul. In ‘Campos Sulinos, Conservação e Uso Sustentável da Biodiversidade’. (Eds V. D. Pillar, S. C. Müller, Z. M. S. Castilhos and A. V. A. Jacques.) pp. 63–78. (Ministério do Meio Ambiente (MMA): Brasília, DF.)
Both, C., Kwet, A., and Solé, M. (2007). The tadpole of Hypsiboas leptolineatus (Braun and Braun, 1977), a species in the Hypsiboas polytaenius clade (Anura; Hylidae). Brazilian Journal of Biology 67, 309–312.
| The tadpole of Hypsiboas leptolineatus (Braun and Braun, 1977), a species in the Hypsiboas polytaenius clade (Anura; Hylidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srlvVChtA%3D%3D&md5=ff0579604a2da21c77264f9e351a6bf7CAS |
Both, C., Kaefer, Í. L., Santos, T. G., and Cechin, S. Z. (2008). An austral anuran assemblage in the Neotropics: seasonal occurrence correlated with photoperiod. Journal of Natural History 42, 205–222.
| An austral anuran assemblage in the Neotropics: seasonal occurrence correlated with photoperiod.Crossref | GoogleScholarGoogle Scholar |
Bridges, A. S., and Dorcas, M. E. (2000). Temporal variation in anuran calling behavior: implications for surveys and monitoring programs. Copeia 2000, 587–592.
| Temporal variation in anuran calling behavior: implications for surveys and monitoring programs.Crossref | GoogleScholarGoogle Scholar |
Canavero, A., and Arim, M. (2009). Clues supporting photoperiod as the main determinant of seasonal variation in amphibian activity. Journal of Natural History 43, 2975–2984.
| Clues supporting photoperiod as the main determinant of seasonal variation in amphibian activity.Crossref | GoogleScholarGoogle Scholar |
Chao, A., and Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547.
| Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size.Crossref | GoogleScholarGoogle Scholar |
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., and Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67.
| Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.Crossref | GoogleScholarGoogle Scholar |
Chao, A., Ma, K. H., and Hsieh, T. C. (2016) iNEXT (iNterpolation and EXTrapolation) online: software for interpolation and extrapolation of species diversity. Program and user’s guide. Available at http://chao.stat.nthu.edu.tw/wordpress/software_download/ [accessed 16 November 2016].
Cook, R. P., Tupper, T. A., Paton, P. W., and Timm, B. C. (2011). Effects of temperature and temporal factors on anuran detection probabilities at Cape Cod National Seashore, Massachusetts, USA: implications for long-term monitoring. Herpetological Conservation and Biology 6, 25–39.
Corn, P. S., Muths, E., and Iko, W. M. (2000). A comparison in Colorado of three methods to monitor breeding amphibians. Northwestern Naturalist (Olympia, Wash.) 81, 22–30.
| A comparison in Colorado of three methods to monitor breeding amphibians.Crossref | GoogleScholarGoogle Scholar |
Crump, M. L., and Scott, N. J. Jr (1994). Visual encounter surveys. In ‘Measuring and Monitoring Biological Diversity – Standard Methods for Amphibians’. (Eds W. R. Heyer, M. A. Donnelly, R. W. Mcdiarmid, L. C. Hayek and M. S. Foster.) pp. 84–92. (Smithsonian Institution: Washington, DC.)
De Cáceres, M., and Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574.
| Associations between species and groups of sites: indices and statistical inference.Crossref | GoogleScholarGoogle Scholar |
De Cáceres, M., Legendre, P., and Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684.
| Improving indicator species analysis by combining groups of sites.Crossref | GoogleScholarGoogle Scholar |
De-Carvalho, C. B., Freitas, E. B. D., Faria, R. G., Batista, R. D. C., Batista, C. D. C., Coelho, W. A., and Bocchiglieri, A. (2008). História natural de Leptodactylus mystacinus e Leptodactylus fuscus (Anura: Leptodactylidae) no Cerrado do Brasil Central. Biota Neotropica 8, 105–115.
| História natural de Leptodactylus mystacinus e Leptodactylus fuscus (Anura: Leptodactylidae) no Cerrado do Brasil Central.Crossref | GoogleScholarGoogle Scholar |
Doan, T. M. (2003). Which methods are most effective for surveying rain forest herpetofauna? Journal of Herpetology 37, 72–81.
| Which methods are most effective for surveying rain forest herpetofauna?Crossref | GoogleScholarGoogle Scholar |
Dobkin, D. S., and Gettinger, R. D. (1985). Thermal aspects of anuran foam nests. Journal of Herpetology 19, 271–275.
| Thermal aspects of anuran foam nests.Crossref | GoogleScholarGoogle Scholar |
Dodd, C. K. J. (Ed.) (2010). ‘Amphibian Ecology and Conservation: a Handbook of Techniques.’ (Oxford University Press: Oxford.)
Dorcas, M. E., Price, S. J., Walls, S. C., and Barichivich, W. J. (2010). Auditory monitoring of anuran populations. In ‘Amphibian Ecology and Conservation: A Hand Book of Techniques’. (Ed. C. K. Dodd Jr.) pp. 281–298. (Oxford University Press: Oxford.)
Duellman, W. E., and Trueb, L. (Eds) (1986). ‘Biology of Amphibians.’ (JHU Press: New York, NY.)
Dufrêne, M., and Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.
Gooch, M. M., Heupel, A. M., Price, S. J., and Dorcas, M. E. (2006). The effects of survey protocol on detection probabilities and site occupancy estimates of summer breeding anurans. Applied Herpetology 3, 129–142.
| The effects of survey protocol on detection probabilities and site occupancy estimates of summer breeding anurans.Crossref | GoogleScholarGoogle Scholar |
Gotelli, N. J., and Colwell, R. K. (2011). Estimating species richness. In ‘Biological Diversity: Frontiers in Measurement and Assessment’. (Eds A. E. Magurran and B. J. McGill.) pp. 39–54. (Oxford University Press: New York.)
Grafe, T. U., and Meuche, I. (2005). Chorus tenure and estimates of population size of male European tree frogs Hyla arborea: implications for conservation. Amphibia-Reptilia 26, 437–444.
| Chorus tenure and estimates of population size of male European tree frogs Hyla arborea: implications for conservation.Crossref | GoogleScholarGoogle Scholar |
Guzy, J. C., Price, S. J., and Dorcas, M. E. (2014). Using multiple methods to assess detection probabilities of riparian-zone anurans: implications for monitoring. Wildlife Research 41, 243–257.
| Using multiple methods to assess detection probabilities of riparian-zone anurans: implications for monitoring.Crossref | GoogleScholarGoogle Scholar |
Haddad, C. F., and Pombal, J. P. (1998). Redescription of Physalaemus spiniger (Anura: Leptodactylidae) and description of two new reproductive modes. Journal of Herpetology 32, 557–565.
| Redescription of Physalaemus spiniger (Anura: Leptodactylidae) and description of two new reproductive modes.Crossref | GoogleScholarGoogle Scholar |
Haddad, C. F., and Prado, C. P. (2005). Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. Bioscience 55, 207–217.
| Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil.Crossref | GoogleScholarGoogle Scholar |
Haselmayer, J., and Quinn, J. S. (2000). A comparison of point counts and sound recording as bird survey methods in Amazonian southeast Peru. The Condor 102, 887–893.
| A comparison of point counts and sound recording as bird survey methods in Amazonian southeast Peru.Crossref | GoogleScholarGoogle Scholar |
Hasenack, H., Weber, E., Boldrini, I. I., and Trevisan, R. (2010). ‘Mapa de Sistemas Ecológicos da Ecoregião da Savana Uruguaia em Escala 1 : 500.000 ou Superior e Relatório Técnico Descrevendo Insumos Utilizados e Metodologia de Elaboração do Mapa de Sistemas Ecológicos.’ (Universidade Federal do Rio Grande do Sul: Brazil).
Hatano, F. H., Rocha, C. F., and Van Sluys, M. (2002). Environmental factors affecting calling activity of a tropical diurnal frog (Hylodes phyllodes: Leptodactylidae). Journal of Herpetology 36, 314–318.
| Environmental factors affecting calling activity of a tropical diurnal frog (Hylodes phyllodes: Leptodactylidae).Crossref | GoogleScholarGoogle Scholar |
Heard, G. W., Robertson, P., and Scroggie, M. P. (2006). Assessing detection probabilities for the endangered growling grass frog (Litoria raniformis) in southern Victoria. Wildlife Research 33, 557–564.
| Assessing detection probabilities for the endangered growling grass frog (Litoria raniformis) in southern Victoria.Crossref | GoogleScholarGoogle Scholar |
Henwood, W. D. (1998). An overview of protected areas in the temperate grasslands biome. Parks 8, 3–8.
Heyer, W. R. (1969). The adaptive ecology of the species groups of the genus Leptodactylus (Amphibia, Leptodactylidae). Evolution 23, 421–428.
| The adaptive ecology of the species groups of the genus Leptodactylus (Amphibia, Leptodactylidae).Crossref | GoogleScholarGoogle Scholar |
Heyer, R., Donnelly, M. A., Foster, M., Mcdiarmid, R., Hayek, L. C., and Foster, M. S. (Eds) (1994). ‘Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians.’ (Smithsonian Institution Press: Washington, DC.)
Hiert, C., and Moura, M. O. (2010). Abiotic correlates of temporal variation of Hypsiboas leptolineatus (Amphibia: Hylidae). Zoologia 27, 703–708.
| Abiotic correlates of temporal variation of Hypsiboas leptolineatus (Amphibia: Hylidae).Crossref | GoogleScholarGoogle Scholar |
Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., and Roberts, C. (2005). Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8, 23–29.
| Confronting a biome crisis: global disparities of habitat loss and protection.Crossref | GoogleScholarGoogle Scholar |
Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal. Biometrische Zeitschrift 50, 346–363.
| Simultaneous inference in general parametric models.Crossref | GoogleScholarGoogle Scholar |
Hsu, M. Y., Kam, Y. C., and Fellers, G. M. (2005). Effectiveness of amphibian monitoring techniques in a Taiwanese subtropical forest. The Herpetological Journal 15, 73–79.
IBGE (2004). Mapa de Biomas do Brasil. Primeira aproximação. Available at http://www2.ibge.gov.br/download/mapas_murais/biomas_pdf.zip [accessed 6 July 2015].
Iop, S., Lipinski, V. M., Madalozzo, B., Maragno, F. P., Cechin, S. Z., and Santos, T. G. (2015). Re-description of the external morphology of Phyllomedusa iheringii Boulenger, 1885 larvae (Anura: Hylidae), with comments on the external morphology of tadpoles of the P. burmeisteri group. Acta Herpetologica 10, 67–72.
Isacch, J. P., and Barg, M. (2002). Are bufonid toads specialized ant-feeders? A case test from the Argentinian flooding pampa. Journal of Natural History 36, 2005–2012.
| Are bufonid toads specialized ant-feeders? A case test from the Argentinian flooding pampa.Crossref | GoogleScholarGoogle Scholar |
Kolenc, F., Borteiro, C., Tedros, M., Nunez, D., and Maneyro, R. (2006). The tadpole of Physalaemus henselii (Peters) (Anura: Leiuperidae). Zootaxa 1360, 41–50.
Kopp, K., Signorelli, L., and Bastos, R. P. (2010). Temporal distribution and diversity of reproductive modes in anuran amphibians in the Emas National Park and surrounding area, State of Goiás, Brazil. Iheringia 100, 192–200.
| Temporal distribution and diversity of reproductive modes in anuran amphibians in the Emas National Park and surrounding area, State of Goiás, Brazil.Crossref | GoogleScholarGoogle Scholar |
Krebs, C. J. (Ed.) (1999). ‘Ecological Methodology.’ (Harper & Row: New York, NY.)
Laufer, G., and Barreneche, J. M. (2008). Re-description of the tadpole of Pseudopaludicola falcipes (Anura: Leiuperidae), with comments on larval diversity of the genus. Zootaxa 1760, 50–58.
MacKenzie, D. I. (Ed.) (2006). ‘Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence.’ (Elsevier: San Diego, SA.)
Maffei, F., do Nascimento, B. T. M., Moya, G. M., and Donatelli, R. J. (2015). Anurans of the Agudos and Jaú municipalities, state of São Paulo, Southeastern Brazil. Check List 11, 1645.
| Anurans of the Agudos and Jaú municipalities, state of São Paulo, Southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Magurran, A. E. (Ed.) (2004). ‘Measuring Biological Diversity.’ (Blackwell Publishing Company: Maldan, MA.)
Maneyro, R., and Carreira, S. (Eds) (2012). ‘Guía de Anfibios del Uruguay.’ (Ediciones de la Fuga: Montevideo, Uruguay.)
Mascarenhas, L., Tiso, C., Linares, A. M., de Moura, C. F. O., Pezzuti, T. L., Leite, F. S. F., and Eterovick, P. C. (2015). Improved local inventory and regional contextualization for anuran diversity assessment at an endangered habitat in southeastern Brazil. Journal of Natural History 50, 1–17.
May, R. M. (1988). How many species are there on earth? Science 241, 1441–1449.
| How many species are there on earth?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjtlWjsw%3D%3D&md5=b934513cd03c72ca5dd3a2bc974b7943CAS |
Mazzoni, D., and Dannenberg, R. (2000). Audacity (software). The Audacity Team, Pittsburg, SA. Available at http://www.audacityteam.org [accessed 17 March 2015]
McDiarmid, R. W., and Altig, R. (Eds) (1999). ‘Tadpoles: The Biology of Anuran Larvae.’ (University of Chicago Press: Chicago, IL.)
Nimer, E. (1990). ‘Geografia do Brasil: Região Sul.’ (Fundação Instituto Brasileiro de Geografia e Estatística: Brazil.)
Ospina, O. E., Villanueva-Rivera, L. J., Corrada-Bravo, C. J., and Aide, T. M. (2013). Variable response of anuran calling activity to daily precipitation and temperature: implications for climate change. Ecosphere 4, 47.
| Variable response of anuran calling activity to daily precipitation and temperature: implications for climate change.Crossref | GoogleScholarGoogle Scholar |
Overbeck, G. E., Müller, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., Boldrini, I. I., Both, R., and Forneck, E. D. (2007). Brazil’s neglected biome: the South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics 9, 101–116.
| Brazil’s neglected biome: the South Brazilian Campos.Crossref | GoogleScholarGoogle Scholar |
Parris, K. M., Norton, T. W., and Cunningham, R. B. (1999). A comparison of techniques for sampling amphibians in the forests of southeast Queensland, Australia. Herpetologica 55, 271–283.
Paszkowski, C., Scrimgeour, G., Gingras, B., and Kendall, S. (2002). Comparison of Techniques for assessing amphibian assemblages on streams in the Western Boreal Forest. Canadian Field Naturalist 116, 116–119.
Pellet, J., Helfer, V., and Yannic, G. (2007). Estimating population size in the European tree frog (Hyla arborea) using individual recognition and chorus counts. Amphibia-Reptilia 28, 287–294.
| Estimating population size in the European tree frog (Hyla arborea) using individual recognition and chorus counts.Crossref | GoogleScholarGoogle Scholar |
Peterson, C. R., and Dorcas, M. F. (1994). Automated data acquisition. In ‘Measuring and Monitoring Biological Diversity – Standard Methods for Amphibians’. (Eds W. R. Heyer, M. A. Donnelly, R. W. Mcdiarmid, L. C. Hayek and M. S. Foster.) pp. 47–57. (Smithsonian Institution: Washington.)
R Development Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria. Available at http://www.R-project.org/ [accessed 5 June 2015].
Ribeiro-Júnior, M. A., Gardner, T. A., and Ávila-Pires, T. C. (2008). Evaluating the effectiveness of herpetofaunal sampling techniques across a gradient of habitat change in a tropical forest landscape. Journal of Herpetology 42, 733–749.
| Evaluating the effectiveness of herpetofaunal sampling techniques across a gradient of habitat change in a tropical forest landscape.Crossref | GoogleScholarGoogle Scholar |
Rocha, C. F. D., Van Sluys, M., Hatano, F. H., Boquimpani-Freitas, L., Marra, R. V., and Marques, R. V. (2004). Relative efficiency of anuran sampling methods in a restinga habitat (Jurubatiba, Rio de Janeiro, Brazil). Brazilian Journal of Biology 64, 879–884.
| Relative efficiency of anuran sampling methods in a restinga habitat (Jurubatiba, Rio de Janeiro, Brazil).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7hsVegsw%3D%3D&md5=373ecbad8e12ccf79d73b384a9c650a6CAS |
Rödel, M. O., and Ernst, R. (2004). Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica (Bonn) 10, 1–14.
Rothermel, B. B., and Semlitsch, R. D. (2002). An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conservation Biology 16, 1324–1332.
| An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians.Crossref | GoogleScholarGoogle Scholar |
Santos, T. G., Rossa-Feres, D. D. C., and Casatti, L. (2007). Diversidade e distribuição espaço-temporal de anuros em região com pronunciada estação seca no sudeste do Brasil. Iheringia 97, 37–49.
| Diversidade e distribuição espaço-temporal de anuros em região com pronunciada estação seca no sudeste do Brasil.Crossref | GoogleScholarGoogle Scholar |
Santos, T. G., Iop, S., and Alves, S. S. (2014). Anfíbios dos Campos Sulinos: diversidade, lacunas de conhecimento, desafios para conservação e perspectivas. Herpetologia Brasileira 3, 51–59.
Sayre, R., Roca, E., Sedaghatkish, G., Young, B., Keel, S., and Roca, R. (Eds) (1999). ‘Nature in Focus: Rapid Ecological Assessment.’ (Island Press: Washington, DC.)
Schmidt, B. R. (2004). Declining amphibian populations: the pitfalls of count data in the study of diversity, distributions, dynamics, and demography. The Herpetological Journal 14, 167–174.
Schmidt, B. R., and Pellet, J. (Eds) (2009). Quantifying abundance: counts, detection probabilities, and estimates. In ‘Amphibian Ecology and Conservation: A Handbook of Techniques’. pp. 465–479. (Oxford University Press: Oxford.)
Scott, J., and Woodward, B. D. (1994). Surveys at breeding sites. In ‘Measuring and Monitoring Biological Diversity – Standard Methods for Amphibians’. (Eds W. R. Heyer, M. A. Donnelly, R. W. Mcdiarmid, L. C. Hayek and M. S. Foster.) pp. 118–125. (Smithsonian Institution: Washington.)
Shaffer, H. B., Alford, R. A., Woodward, B. D., Richards, S. J., Altig, R. G., and Gascon, C. 1994. Quantitative sampling of amphibian larvae. In ‘Measuring and Monitoring Biological Diversity – Standard Methods for Amphibians’. (Eds W. R. Heyer, M. A. Donnelly, R. W. Mcdiarmid, L. C. Hayek and M. S. Foster.) pp. 130–141. (Smithsonian Institution: Washington.)
Silva, F. R. D. (2010). Evaluation of survey methods for sampling anuran species richness in the Neotropics. South American Journal of Herpetology 5, 212–220.
| Evaluation of survey methods for sampling anuran species richness in the Neotropics.Crossref | GoogleScholarGoogle Scholar |
Silveira, L. F., Beisiegel, B. D. M., Curcio, F. F., Valdujo, P. H., Dixo, M., Verdade, V. K., Mattox, G. M. T., and Cunningham, P. T. M. (2010). Para que servem os inventários de fauna? Estudos Avançados 24, 173–207.
| Para que servem os inventários de fauna?Crossref | GoogleScholarGoogle Scholar |
Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C., and Dehling, M. (2012). Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zoology 47, 60–73.
| Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda).Crossref | GoogleScholarGoogle Scholar |
Sutherland, W. (Ed.) (2006). ‘Ecological Census Techniques: A Handbook.’ (Cambridge University Press: Cambridge.)
Van Sluys, M., Marra, R. V., Boquimpani-Freitas, L., and Rocha, C. F. D. (2012). Environmental factors affecting calling behavior of sympatric frog species at an Atlantic Rain Forest area, Southeastern Brazil. Journal of Herpetology 46, 41–46.
| Environmental factors affecting calling behavior of sympatric frog species at an Atlantic Rain Forest area, Southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Weir, L. A., Royle, J. A., Nanjappa, P., and Jung, R. E. (2005). Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. Journal of Herpetology 39, 627–639.
| Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland.Crossref | GoogleScholarGoogle Scholar |
Wells, K. D. (Ed.) (2007). ‘The Ecology and Behavior of Amphibians.’ (University of Chicago Press: Chicago.)
White, R. P., Murray, S., and Rohweder, M. (2000). ‘Pilot Assessment of Global Ecosystems: Grassland Ecosystems.’ (World Resources Institute: Washington, DC.)
Wiley, R. H., and Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology 3, 69–94.
| Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations.Crossref | GoogleScholarGoogle Scholar |
Willacy, R. J., Mahony, M., and Newell, D. A. (2015). If a frog calls in the forest: Bioacoustic monitoring reveals the breeding phenology of the endangered Richmond Range mountain frog (Philoria richmondensis). Austral Ecology 40, 625–633.
| If a frog calls in the forest: Bioacoustic monitoring reveals the breeding phenology of the endangered Richmond Range mountain frog (Philoria richmondensis).Crossref | GoogleScholarGoogle Scholar |
Wrege, M. S., Steinmetz, S., Reisser Júnior, C., and Almeida, I. D. (Eds) (2011). ‘Atlas Climático da Região Sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul.’ (Embrapa Clima Temperado: Brazil.)
Ximenez, S., and Tozetti, A. M. (2015). Seasonality in anuran activity and calling season in a Brazilian subtemperate wetland. Zoological Studies (Taipei, Taiwan) 54, 1–9.
Zuur, A. F., Ieno, E. N., and Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3–14.
| A protocol for data exploration to avoid common statistical problems.Crossref | GoogleScholarGoogle Scholar |