Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Anthropogenic stressors influence small mammal communities in tropical East African savanna at multiple spatial scales

Andrea E. Byrom A G , Ally J. K. Nkwabi B , Kristine Metzger C D , Simon A. R. Mduma B , Guy J. Forrester A , Wendy A. Ruscoe E , Denné N. Reed F , John Bukombe B , John Mchetto B and A. R. E. Sinclair B C
+ Author Affiliations
- Author Affiliations

A Landcare Research, PO Box 69040, Lincoln 7640, New Zealand.

B Serengeti Biodiversity Program, Tanzania Wildlife Research Institute, PO Box 661, Arusha, Tanzania.

C Beaty Biodiversity Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.

D United States Fish and Wildlife Service, 500 Gold Avenue, SW, Albuquerque, NM 87102, USA.

E Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia.

F Department of Anthropology, University of Texas at Austin, 1 University Station C3200, Austin, TX 78712, USA.

G Corresponding author. Email: byroma@landcareresearch.co.nz

Wildlife Research 42(2) 119-131 https://doi.org/10.1071/WR14223
Submitted: 3 November 2014  Accepted: 2 February 2015   Published: 13 March 2015

Abstract

Context: Protection of natural ecosystems undoubtedly safeguards ecological communities, with positive benefits for ecosystem processes and function. However, ecosystems are under threat from anthropogenic stressors that reduce the resilience both of component species and the system as a whole.

Aims: To determine how anthropogenic stressors (land use and climate change) could impact the diversity and resilience of a small mammal community in the greater Serengeti ecosystem, an East African savanna comprising Serengeti National Park (SNP) and adjacent agro-ecosystems, at local (SNP) and Africa-wide geographic scales.

Methods: We recorded small mammal species in 10 habitats in the greater Serengeti ecosystem, including the agro-ecosystem, over 48 years (1962–2010). We calculated richness and diversity for each habitat type, and used an index of similarity to quantify differences in the community among habitats. Species accumulation curves were also generated for each habitat type.

Key results: We recorded 40 species of small mammals in the greater Serengeti ecosystem. At the local scale, restricted habitat types in SNP (each <1% of the total area) made a disproportionately large contribution to diversity. Agro-ecosystems had lower richness and were less likely to contain specialist species. At regional and Africa-wide scales, local endemics were less likely to be recorded in the agro-ecosystem (57% species loss) compared with those with regional (33% loss) or Africa-wide (31%) geographic distributions.

Conclusions: At the local scale, the variety of habitats in SNP contributed to overall diversity. However, the ability to maintain this diversity in the adjacent agro-ecosystem was compromised for localised endemics compared with species with Africa-wide ranges. Land use intensification adjacent to SNP and projected changes in rainfall patterns for East Africa under global climate scenarios may compromise the future resilience of the small mammal community in this tropical savanna ecosystem.

Implications: The loss of rare or specialised species from protected areas and human-modified ecosystems could be mitigated by: (1) increasing habitat complexity and maintaining specialist habitats in the agro-ecosystem; and (2) creating buffers at the boundary of protected natural ecosystems that accommodate regime shifts in response to climatic change. These measures would increase the resilience of this coupled human–natural savanna ecosystem.

Additional keywords: agro-ecosystem, biodiversity conservation, climate change, land use, resilience, rodent, Serengeti, species richness.


References

Anderson, T. M. (2008). Plant compositional change over time increases with rainfall in Serengeti grasslands. Oikos 117, 675–682.
Plant compositional change over time increases with rainfall in Serengeti grasslands.Crossref | GoogleScholarGoogle Scholar |

Barbet-Massin, M., Thuiller, W., and Jiguet, F. (2012). The fate of European breeding birds under climate, landuse and dispersal scenarios. Global Change Biology 18, 881–890.
The fate of European breeding birds under climate, landuse and dispersal scenarios.Crossref | GoogleScholarGoogle Scholar |

Beale, C. M., Baker, N. E., Brewer, M. J., and Lennon, J. J. (2013). Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecology Letters 16, 1061–1068.
Protected area networks and savannah bird biodiversity in the face of climate change and land degradation.Crossref | GoogleScholarGoogle Scholar | 23782913PubMed |

Berkes, F. (2004). Rethinking community-based conservation. Conservation Biology 18, 621–630.
Rethinking community-based conservation.Crossref | GoogleScholarGoogle Scholar |

Bonnet, O., Fritz, H., Gignoux, J., and Meuret, M. (2010). Challenges of foraging on a high-quality but unpredictable food source: the dynamics of grass production and consumption in savanna grazing lawns. Journal of Ecology 98, 908–916.
Challenges of foraging on a high-quality but unpredictable food source: the dynamics of grass production and consumption in savanna grazing lawns.Crossref | GoogleScholarGoogle Scholar |

Bowman, J., Forbes, G., and Dilworth, T. (2000). The spatial scale of variability in small-mammal populations. Ecography 23, 328–334.
The spatial scale of variability in small-mammal populations.Crossref | GoogleScholarGoogle Scholar |

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325–349.
An ordination of the upland forest communities of southern Wisconsin.Crossref | GoogleScholarGoogle Scholar |

Bryja, J., Heroldova, M., and Zejda, J. (2002). Effects of deforestation on structure and diversity of small mammal communities in the Moravskoslezské Beskydy Mts (Czech Republic). Acta Theriologica 47, 295–306.
Effects of deforestation on structure and diversity of small mammal communities in the Moravskoslezské Beskydy Mts (Czech Republic).Crossref | GoogleScholarGoogle Scholar |

Byrom, A. E., Craft, M. E., Durant, S. M., Nkwabi, A. J. K., Metzger, K., Hampson, K., Mduma, S. A. R., Forrester, G. J., Ruscoe, W. A., Reed, D. N., Bukombe, J., Mchetto, J., and Sinclair, A. R. E. (2014). Episodic outbreaks of small mammals influence predator community dynamics in an East African savanna ecosystem. Oikos 123, 1014–1024.
Episodic outbreaks of small mammals influence predator community dynamics in an East African savanna ecosystem.Crossref | GoogleScholarGoogle Scholar |

Byrom, A. E., Ruscoe, W. A., Nkwabi, A. K., Metzger, K. L., Forrester, G. J., Craft, M. E., Durant, S. M., Makacha, S., Bukombe, J., Mchetto, J., Mduma, S. A. R., Reed, D. N., Hampson, K., and Sinclair, A. R. E. (2015). Small mammal diversity and population dynamics in the Greater Serengeti ecosystem. In: ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–Natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 323–357. (University of Chicago Press: Chicago.)

Chapin, F. S., Carpenter, S. R., Kofinas, G. P., Folke, C., Abel, N., Clark, W. C., Olsson, P., Stafford-Smith, D. M., Walker, B., Young, O. R., Berkes, F., Biggs, R., Grove, J. M., Naylor, R. L., Pinkerton, E., Steffen, W., and Swanson, F. J. (2010). Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends in Ecology & Evolution 25, 241–249.
Ecosystem stewardship: sustainability strategies for a rapidly changing planet.Crossref | GoogleScholarGoogle Scholar |

Cleaveland, S., Packer, C., Hampson, K., Kaare, M., Kock, R., Craft, M., Lembo, T., Mlengeya, T., and Dobson, A. (2008). The multiple roles of infectious diseases in the Serengeti ecosystem. In: ‘Serengeti III: Human Impacts on Ecosystem Dynamics’. (Eds A. R. E. Sinclair, C. Packer, S. A. R. Mduma and J. M. Fryxell.) pp. 209–239. (University of Chicago Press: Chicago.)

Colles, A., Liow, L. H., and Prinzig, A. (2009). Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12, 849–863.
Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches.Crossref | GoogleScholarGoogle Scholar | 19580588PubMed |

Crespin, L., Papillon, Y., Abdoulaye, D., Granjon, L., and Sicard, B. (2008). Annual flooding, survival, and recruitment in a rodent population from the Niger River plain in Mali. Journal of Tropical Ecology 24, 375–386.
Annual flooding, survival, and recruitment in a rodent population from the Niger River plain in Mali.Crossref | GoogleScholarGoogle Scholar |

Devictor, V., and Robert, A. (2009). Measuring community responses to large-scale disturbance in conservation biogeography. Diversity & Distributions 15, 122–130.
Measuring community responses to large-scale disturbance in conservation biogeography.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R., Greenville, A. C., Beh, C.-L., Tamayo, B., and Wardle, G. M. (2010). Social organisation and movements of desert rodents during population ‘booms’ and ‘busts’ in central Australia. Journal of Mammalogy 91, 798–810.
Social organisation and movements of desert rodents during population ‘booms’ and ‘busts’ in central Australia.Crossref | GoogleScholarGoogle Scholar |

Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., and Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution 22, 489–496.
Interactive effects of habitat modification and species invasion on native species decline.Crossref | GoogleScholarGoogle Scholar |

Elmqvist, T., Folke, C., Nystrom, M., Peterson, G., Bengtsson, J., Walker, B., and Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment 1, 488–494.
Response diversity, ecosystem change, and resilience.Crossref | GoogleScholarGoogle Scholar |

Estes, A. B., Kuemmerle, T., Kushnir, H., Radeloff, V. C., and Shugart, H. H. (2015). Agricultural expansion and human population trends in the Greater Serengeti ecosystem from 1984–2003. In: ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–Natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 513–531. (University of Chicago Press: Chicago.)

Filippi-Codaccioni, O., Devictor, V., Bas, Y., and Julliard, R. (2010). Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity. Biological Conservation 143, 1493–1500.
Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity.Crossref | GoogleScholarGoogle Scholar |

Fitzherbert, E., Gardner, T., Caro, T., and Jenkins, P. (2007). Habitat preferences of small mammals in the Katavi ecosystem of western Tanzania. African Journal of Ecology 45, 249–257.
Habitat preferences of small mammals in the Katavi ecosystem of western Tanzania.Crossref | GoogleScholarGoogle Scholar |

Flynn, D. F. B., Gorgol-Prokurat, M., Nogeire, T., Molinari, N., Trautman Richers, B., Lin, B. B., Simpson, N., Mayfield, M. M., and DeClerck, F. (2009). Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12, 22–33.
Loss of functional diversity under land use intensification across multiple taxa.Crossref | GoogleScholarGoogle Scholar |

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., and Holling, C. S. (2004). Regime shifts, resilience and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics 35, 557–581.
Regime shifts, resilience and biodiversity in ecosystem management.Crossref | GoogleScholarGoogle Scholar |

Gillson, L. (2004). Testing non-equilibrium theories in savannas: 1400 years of vegetation change in Tsavo National Park, Kenya. Ecological Complexity 1, 281–298.
Testing non-equilibrium theories in savannas: 1400 years of vegetation change in Tsavo National Park, Kenya.Crossref | GoogleScholarGoogle Scholar |

Goheen, J. R., Palmer, T. M., Keesing, F., Riginos, C., and Young, T. P. (2010). Large herbivores facilitate savanna tree establishment via diverse and indirect pathways. Journal of Animal Ecology 79, 372–382.
Large herbivores facilitate savanna tree establishment via diverse and indirect pathways.Crossref | GoogleScholarGoogle Scholar | 20039982PubMed |

Hagenah, N., Prins, H. H. T., and Olff, H. (2009). Effects of large herbivores on murid rodents in a South African savanna. Journal of Tropical Ecology 25, 483–492.
Effects of large herbivores on murid rodents in a South African savanna.Crossref | GoogleScholarGoogle Scholar |

Hulme, M., Doherty, R., Ngara, T., New, M., and Lister, D. (2001). African climate change: 1900–2100. Climate Research 17, 145–168.
African climate change: 1900–2100.Crossref | GoogleScholarGoogle Scholar |

Hurst, Z. M., McCleery, R. A., Collier, B. A., Fletcher, R. J., Silvy, N. J., Taylor, P. J., and Monadjem, A. (2013). Dynamic edge effects in small mammal communities across a conservation–agricultural interface in Swaziland. PLoS ONE 8, e74520.
Dynamic edge effects in small mammal communities across a conservation–agricultural interface in Swaziland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrs7fE&md5=ce23c729bd00ef21a16e7e3ba81c7e6fCAS | 24040269PubMed |

Hurst, Z. M., McCleery, R. A., Collier, B. A., Silvy, N. J., Taylor, P. J., and Monadjem, A. (2014). Linking changes in small mammal communities to ecosystem functions in an agricultural landscape. Mammalian Biology 79, 17–23.
Linking changes in small mammal communities to ecosystem functions in an agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Jiang, G., Liu, J., Xu, L., Yu, G., He, H., and Zhang, Z. (2013). Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem. Integrative Zoology 8, 162–174.
Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem.Crossref | GoogleScholarGoogle Scholar | 23731812PubMed |

Keesing, F. (1998). Impacts of ungulates on the demography and diversity of small mammals in central Kenya. Oecologia 116, 381–389.
Impacts of ungulates on the demography and diversity of small mammals in central Kenya.Crossref | GoogleScholarGoogle Scholar |

Keesing, F. (2000). Cryptic consumers and the ecology of an African savanna. Bioscience 50, 205–215.
Cryptic consumers and the ecology of an African savanna.Crossref | GoogleScholarGoogle Scholar |

Krebs, C. J. (2001). ‘Ecological Methodology.’ (Harper and Row: New York.)

Krebs, C. J. (2009). ‘Programs for Ecological Methodology, version 7.1.’ (Exeter Software)

Krystufek, B., Haberl, W., and Baxter, R. M. (2008). Rodent assemblage in a habitat mosaic within the Valley Thicket vegetation of the Eastern Cape Province, South Africa. African Journal of Ecology 46, 80–87.
Rodent assemblage in a habitat mosaic within the Valley Thicket vegetation of the Eastern Cape Province, South Africa.Crossref | GoogleScholarGoogle Scholar |

Letnic, M., and Dickman, C. R. (2010). Resource pulses and mammalian dynamics: conceptual models for hummock grasslands and other Australian desert habitats. Biological Reviews of the Cambridge Philosophical Society 85, 501–521.
| 1:STN:280:DC%2BC3cjgtlCkuw%3D%3D&md5=b67ae16982d9040c5badcdb162953e01CAS | 20015313PubMed |

Letnic, M., Tamayo, B., and Dickman, C. R. (2005). The responses of mammals to La Niña (El Niño Southern Oscillation)-associated rainfall, predation, and wildfire in central Australia. Journal of Mammalogy 86, 689–703.
The responses of mammals to La Niña (El Niño Southern Oscillation)-associated rainfall, predation, and wildfire in central Australia.Crossref | GoogleScholarGoogle Scholar |

Li, G., Liu, Y., Frelich, L. E., and Sun, S. (2011). Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. Journal of Applied Ecology 48, 659–667.
Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, R., Hobbs, J., Montague-Drake, R., Alexandra, J., Bennett, A., Burgman, M., Cale, P., Calhoun, A., Cramer, V., Cullen, P., Driscoll, D., Fahrig, L., Fischer, J., Franklin, J., Haila, Y., Hunter, M., Gibbons, P., Lake, S., Luck, G., MacGregor, C., McIntyre, S., Mac Nally, R., Manning, A., Miller, J., Mooney, H., Noss, R., Possingham, H., Saunders, D., Schmiegelow, F., Scott, M., Simberloff, D., Sisk, T., Tabor, G., Walker, B., Wiens, J., Woinarski, J., and Zavaleta, E. (2008). A checklist for ecological management of landscapes for conservation. Ecology Letters 11, 78–91.

Magige, F., and Senzota, R. (2006). Abundance and diversity of rodents at the human–wildlife interface in western Serengeti, Tanzania. African Journal of Ecology 44, 371–378.
Abundance and diversity of rodents at the human–wildlife interface in western Serengeti, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Magurran, A. E. (2004). ‘Measuring Biological Diversity.’ (Blackwell: Malden, MA.)

Makundi, R., Massawe, A. W., and Mulungu, L. S. (2005). Rodent population fluctuations in three ecologically heterogeneous locations in north-east, central and south-west Tanzania. Belgian Journal of Zoology 135, 159–165.

Makundi, R., Massawe, A. W., and Mulungu, L. S. (2007). Breeding seasonality and population dynamics of three rodent species in the Magamba Forest Reserve in the Western Usambara Mountains, north-east Tanzania. African Journal of Ecology 45, 17–21.
Breeding seasonality and population dynamics of three rodent species in the Magamba Forest Reserve in the Western Usambara Mountains, north-east Tanzania.Crossref | GoogleScholarGoogle Scholar |

Makundi, R. H., Massawe, A. W., Mulungu, L. S., and Katakweba, A. (2010). Species diversity and population dynamics of rodents in a farm-fallow field mosaic system in Central Tanzania. African Journal of Ecology 48, 313–320.
Species diversity and population dynamics of rodents in a farm-fallow field mosaic system in Central Tanzania.Crossref | GoogleScholarGoogle Scholar |

Mantyka-Pringle, S., Martin, T. G., and Rhodes, J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18, 1239–1252.
Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Mascia, M. B., Pailler, S., Krithivasan, R., Roshchanka, V., Burns, D., Mlotha, M. J., Murray, D. R., and Peng, N. (2014). Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biological Conservation 169, 355–361.
Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010.Crossref | GoogleScholarGoogle Scholar |

Massawe, A. W., Rwamugira, W., Leirs, H., Makundi, R. H., Mulungu, L., Ngowo, V., and Machang’u, R. (2008). Soil type limits population abundance of rodents in crop fields: case study of the multimammate rat Mastomys natalensis Smith, 1834 in Tanzania. Integrative Zoology 3, 27–30.
Soil type limits population abundance of rodents in crop fields: case study of the multimammate rat Mastomys natalensis Smith, 1834 in Tanzania.Crossref | GoogleScholarGoogle Scholar | 21396048PubMed |

Massawe, A. W., Mulungu, L. S., Makundi, R. H., Dlamini, N., Eiseb, S. J., Kirsten, F., Mahlaba, T., Malebane, P., Maltitz, E. V., Mondajem, A., Taylor, P., Tutjavi, V., and Belmain, S. R. (2011). Spatial and temporal population dynamics of rodents in three geographically different regions in Africa: implication for ecologically-based rodent management. African Zoology 46, 393–405.
Spatial and temporal population dynamics of rodents in three geographically different regions in Africa: implication for ecologically-based rodent management.Crossref | GoogleScholarGoogle Scholar |

McCauley, D. J., Keesing, F., Young, T. P., Allan, B. F., and Pringle, R. M. (2006). Indirect effects of large herbivores on snakes in an African savanna. Ecology 87, 2657–2663.
Indirect effects of large herbivores on snakes in an African savanna.Crossref | GoogleScholarGoogle Scholar | 17089673PubMed |

Meserve, P. L., Kelt, D. A., Previtali, M. A., Milstead, W. B., and Guitierrez, J. R. (2011). Global climate change and small mammal populations in north-central Chile. Journal of Mammalogy 92, 1223–1235.
Global climate change and small mammal populations in north-central Chile.Crossref | GoogleScholarGoogle Scholar |

Metzger, K. L., Sinclair, A. R. E., Macfarlane, A., Coughenour, M. B., and Ding, J. (2015). Scales of change in the Greater Serengeti ecosystem. In: ‘Serengeti IV: Sustaining Biodiversity in a Coupled Human–Natural System’. (Eds A. R. E. Sinclair, K. L. Metzger, J. M. Fryxell and S. A. R. Mduma.) pp. 33–71. (University of Chicago Press: Chicago.)

Meyer, J., Steinhauser, J., Jeltsch, F., and Brandl, R. (2007). Large trees, acacia shrubs, and the density of Thallomys nigricauda in the Thornveld savannah of South Africa. Journal of Arid Environments 68, 363–370.
Large trees, acacia shrubs, and the density of Thallomys nigricauda in the Thornveld savannah of South Africa.Crossref | GoogleScholarGoogle Scholar |

Meyer, J., Raudnitschka, D., Steinhauser, J., Jeltsch, F., and Brandl, R. (2008). Biology and ecology of Thallomys nigricauda (Rodentia, Muridae) in the Thornveld savannah of South Africa. Mammalian Biology 73, 111–118.
Biology and ecology of Thallomys nigricauda (Rodentia, Muridae) in the Thornveld savannah of South Africa.Crossref | GoogleScholarGoogle Scholar |

Midgley, G. F., Hughes, G. O., Thuiller, W., and Rebelo, A. G. (2006). Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Diversity & Distributions 12, 555–562.
Migration rate limitations on climate change-induced range shifts in Cape Proteaceae.Crossref | GoogleScholarGoogle Scholar |

Misonne, X., and Verschuren, J. (1966). Les rongeurs et lagomorphes de la region du parc national du Serengeti (Tanzanie). Mammalia 30, 517–537.
Les rongeurs et lagomorphes de la region du parc national du Serengeti (Tanzanie).Crossref | GoogleScholarGoogle Scholar |

Monadjem, A., Mahlaba, T. A., Dlamini, N., Eiseb, S. J., Belmain, S. R., Mulungu, L. S., Massawe, A. W., Makundi, R. H., Mohr, K., and Taylor, P. J. (2011). Impact of crop cycle on movement patterns of pest rodent species between fields and houses in Africa. Wildlife Research 38, 603–609.
Impact of crop cycle on movement patterns of pest rodent species between fields and houses in Africa.Crossref | GoogleScholarGoogle Scholar |

Mulungu, L. S., Makundi, R. H., Massawe, A. W., Machung’u, R. S., and Mbije, N. E. (2008). Diversity and distribution of rodent and shrew species associated with variations in altitude on Mount Kilimanjaro, Tanzania. Mammalia 72, 178–185.
Diversity and distribution of rodent and shrew species associated with variations in altitude on Mount Kilimanjaro, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Nelson, G. C., Bennett, E., Berhe, A. A., Cassman, K., DeFries, R., Dietz, T., Dobermann, A., Dobson, A., Janetos, A., Levy, M., Marco, D., Nakicenovic, N., O’Neill, B., Norgaard, R., Petschel-Held, G., Ojima, D., Pingali, P., Watson, R., and Zurek, M. (2006). Anthropogenic drivers of ecosystem change: an overview. Ecology & Society 11, 29.

Nicholson, S. E., Nash, D. J., Chase, B. M., Grab, S. W., Shanahan, T. M., Verschuren, D., Asrat, A., Lézine, A., and Umer, M. (2013). Temperature variability over Africa during the last 2000 years. The Holocene 23, 1085–1094.
Temperature variability over Africa during the last 2000 years.Crossref | GoogleScholarGoogle Scholar |

Nicolas, V., Bryja, J., Akpatou, B., Konecny, A., Lecompte, E., Colyn, M., Lalis, A., Couloux, A., Denys, C., and Granjon, L. (2008). Comparative phylogeography of two sibling species of forest-dwelling rodent (Praomys rostratus and P. tullbergi) in West Africa: different reactions to past forest fragmentation. Molecular Ecology 17, 5118–5134.
Comparative phylogeography of two sibling species of forest-dwelling rodent (Praomys rostratus and P. tullbergi) in West Africa: different reactions to past forest fragmentation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FltVylsg%3D%3D&md5=c4d0b72f43b73ca699773d1795d162c0CAS | 19120992PubMed |

Norton-Griffiths, M., Herlocker, D., and Pennycuick, L. (1975). The patterns of rainfall in the Serengeti ecosystem, Tanzania. African Journal of Ecology 13, 347–374.
The patterns of rainfall in the Serengeti ecosystem, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Oliver, T. H., and Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIREs Climate Change 5, 317–335.
Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities.Crossref | GoogleScholarGoogle Scholar |

Packer, C. (1983). Demographic changes in a colony of Nile grassrats (Arvicanthis niloticus) in Tanzania. Journal of Mammalogy 64, 159–161.
Demographic changes in a colony of Nile grassrats (Arvicanthis niloticus) in Tanzania.Crossref | GoogleScholarGoogle Scholar |

Pardini, R., Bueno, A. A., Gardner, T. A., Inacio Prado, P., and Metzger, J. P. (2010). Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666.
Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes.Crossref | GoogleScholarGoogle Scholar | 21060870PubMed |

Pavlacky, D. C., Possingham, H. P., Lowe, A. J., Prentis, P. J., Green, D. J., and Goldizen, A. W. (2012). Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population. Journal of Animal Ecology 81, 940–952.
Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population.Crossref | GoogleScholarGoogle Scholar | 22489927PubMed |

Perrin, M. R., and Kotler, B. P. (2005). A test of five mechanisms of species coexistence between rodents in a southern African savanna. African Zoology 40, 55–61.

Peters, C. R., Blumenschine, R. J., Hay, R. L., Livingstone, D. A., Marean, C. W., Harrison, T., Armour-Chelu, M., Andrews, P., Bernor, R. L., Bonnefille, R., and Werdelin, L. (2008). Paleoecology of the Serengeti-Mara ecosystem. In ‘Serengeti III: Human Impacts on Ecosystem Dynamics’. (Eds A. R. E. Sinclair, P. Packer, S. A. R. Mduma and J. M. Fryxell.) pp. 47–94. (University of Chicago Press: Chicago.)

Plisnier, P. D., Serneels, S., and Lambin, E. F. (2000). Impact of ENSO on East African ecosystems: a multivariate analysis based on climate and remote sensing data. Global Ecology and Biogeography 9, 481–497.
Impact of ENSO on East African ecosystems: a multivariate analysis based on climate and remote sensing data.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2014). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.) Available at http://www.R-project.org/ [verified 1 October 2014].

Radford, I. J., Dickman, C. R., Start, A. N., Palmer, C., Carnes, K., Everitt, C., Fairman, R., Graham, G., Partridge, T., and Thomson, A. (2014). Mammals of Australia’s tropical savannas: a conceptual model of assemblage structure and regulatory factors in the Kimberley region. PLoS ONE 9, e92341.
Mammals of Australia’s tropical savannas: a conceptual model of assemblage structure and regulatory factors in the Kimberley region.Crossref | GoogleScholarGoogle Scholar | 24670997PubMed |

Reed, D. N. (2007). Serengeti micromammals and their implications for Olduvai paleoenvironments. In ‘Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence’. (Eds R. Bobe, Z. Alemseged and K. Behrensmeyer.) pp. 217–255. (Kluwer: New York.)

Reed, D. N., Anderson, T. M., Dempewolf, J., Metzger, K., and Serneels, S. (2009). The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics. Journal of Biogeography 36, 770–782.
The spatial distribution of vegetation types in the Serengeti ecosystem: the influence of rainfall and topographic relief on vegetation patch characteristics.Crossref | GoogleScholarGoogle Scholar |

Ritchie, M. (2008). Global environmental changes and their impact on the Serengeti. In ‘Serengeti III: Human Impacts on Ecosystem Dynamics’. (Eds A. R. E. Sinclair, C. Packer, S. A. R. Mduma and J. M. Fryxell.) pp. 183–208. (University of Chicago Press: Chicago.)

San-Jose, M., Arroyo-Rodriguez, V., and Sanchez-Cordero, V. (2014). Association between small rodents and forest patch and landscape structure in the fragmented Lacandona rainforest, Mexico. Tropical Conservation Science 7, 403–422.

Saunders, D. A., Hobbs, R. J., and Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5, 18–32.
Biological consequences of ecosystem fragmentation: a review.Crossref | GoogleScholarGoogle Scholar |

Senzota, R. B. M. (1982). The habitat and food habits of the grass rats (Arvicanthis niloticus) in the Serengeti National park, Tanzania. African Journal of Zoology 20, 241–252.

Senzota, R. B. M. (1983). A case of rodent–ungulate resource partitioning. Journal of Mammalogy 64, 326–329.
A case of rodent–ungulate resource partitioning.Crossref | GoogleScholarGoogle Scholar |

Senzota, R. B. M. (1984). The habitat, abundance and burrowing habits of the gerbil, Tatera robusta, in the Serengeti National Park, Tanzania. Mammalia 48, 185–195.
The habitat, abundance and burrowing habits of the gerbil, Tatera robusta, in the Serengeti National Park, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Shaw, M. T., Keesing, F., and Ostfeld, R. S. (2002). Herbivory on Acacia seedlings in an east African savanna. Oikos 98, 385–392.
Herbivory on Acacia seedlings in an east African savanna.Crossref | GoogleScholarGoogle Scholar |

Sinclair, A. R. E. (2008). Integrating conservation in human and natural systems. In ‘Serengeti III: Human Impacts on Ecosystem Dynamics’. (Eds A. R. E. Sinclair, C. Packer, S. A. R. Mduma and J. M. Fryxell.) pp. 471–495. (University of Chicago Press: Chicago.)

Sinclair, A. R. E., and Byrom, A. E. (2006). Understanding ecosystem dynamics for conservation of biota. Journal of Animal Ecology 75, 64–79.
Understanding ecosystem dynamics for conservation of biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vnvVyrsA%3D%3D&md5=6bf7b788b7c2a652062e4e57b16ff284CAS |

Sinclair, A. R. E., Mduma, S. A. R., Hopcraft, J. G. C., Fryxell, J. M., Hilborn, R., and Thirgood, S. (2007). Long-term ecosystem dynamics in the Serengeti: lessons for conservation. Conservation Biology 21, 580–590.
Long-term ecosystem dynamics in the Serengeti: lessons for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2szitVegtg%3D%3D&md5=e8e9ee7aec5a98980ad3ae3714138f37CAS |

Sinclair, A. R. E., Hopcraft, J. G. C., Olff, H., Mduma, S. A. R., Galvin, K. A., and Sharam, G. J. (2008). Historical and future changes to the Serengeti ecosystem. In ‘Serengeti III: Human Impacts on Ecosystem Dynamics’. (Eds A. R. E. Sinclair, P. Packer, S. A. R. Mduma and J. M. Fryxell.) pp. 7–46. (University of Chicago Press: Chicago.)

Sinclair, A. R. E., Metzger, K. L., Fryxell, J. M., Packer, C., Byrom, A., Craft, M. E., Hampson, K., Lembo, T., Durant, S. M., Forrester, G. J., Bukombe, J., Mchetto, J., Dempewolf, J., Hilborn, R., Cleaveland, S., Nkwabi, A., Mosser, A., and Mduma, S. A. R. (2013). Asynchronous food web pathways buffer the response of Serengeti predators to El Niño Southern Oscillation. Ecology 94, 1123–1130.
Asynchronous food web pathways buffer the response of Serengeti predators to El Niño Southern Oscillation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sfht1Wktw%3D%3D&md5=ee539cd86e28cfbe86c1742630925e6cCAS |

Sinclair, A. R. E., Nkwabi, A., Mduma, S. A. R., and Magige, F. (2014). Responses of the Serengeti avifauna to long-term change in the environment. Ostrich: Journal of African Ornithology 85, 1–11.
Responses of the Serengeti avifauna to long-term change in the environment.Crossref | GoogleScholarGoogle Scholar |

Singleton, G. R., Tann, C. R., and Krebs, C. J. (2007). Landscape ecology of house mouse outbreaks in south-eastern Australia. Journal of Applied Ecology 44, 644–652.
Landscape ecology of house mouse outbreaks in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Taylor, P. J., Downs, S., Mondajem, A., Eiseb, S. J., Mulungu, L. S., Massawe, A. W., Mahlaba, T. A., Kirsten, F., Maltitz, E. V., Malebane, P., Makundi, R. H., Lamb, J., and Belmain, S. R. (2012). Experimental treatment-control studies of ecologically-based rodent management in Africa: balancing conservation and pest management. Wildlife Research 39, 51–61.
Experimental treatment-control studies of ecologically-based rodent management in Africa: balancing conservation and pest management.Crossref | GoogleScholarGoogle Scholar |

Thiam, M., Ba, K., and Duplantier, J. M. (2008). Impacts of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis. African Zoology 43, 135–143.
Impacts of climatic changes on small mammal communities in the Sahel (West Africa) as evidenced by owl pellet analysis.Crossref | GoogleScholarGoogle Scholar |

Thibault, K. M., Morgan Ernest, S. K., White, E. P., Brown, J. H., and Goheen, J. C. (2010). Long-term insights into the influence of precipitation on community dynamics in desert rodents. Journal of Mammalogy 91, 787–797.
Long-term insights into the influence of precipitation on community dynamics in desert rodents.Crossref | GoogleScholarGoogle Scholar |

Timbuka, C. D., and Kabigumila, J. (2006). Diversity and abundance of small mammals in the Serengeti Kopjes, Tanzania. Tanzania Journal of Science 32, 1–12.

Vieira, M. V., Olifiers, N., Delciellos, A. C., Antunes, V. Z., Bernardo, L. R., Grelle, C. E. V., and Cerqueira, R. (2009). Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biological Conservation 142, 1191–1200.
Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants.Crossref | GoogleScholarGoogle Scholar |

Walters, M., Milton, S. J., Somers, M. J., and Midgley, J. J. (2005). Post-dispersal fate of Acacia seeds in an African savanna. South African Journal of Wildlife Research 35, 191–199.

Wilsey, B. J., Chalcraft, D. R., Bowles, C. M., and Willig, M. R. (2005). Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86, 1178–1184.
Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity.Crossref | GoogleScholarGoogle Scholar |

Yarnell, R. W., Scott, D. M., Chimimba, C. T., and Metcalfe, D. J. (2007). Untangling the roles of fire, grazing and rainfall on small mammal communities in grassland ecosystems. Oecologia 154, 387–402.
Untangling the roles of fire, grazing and rainfall on small mammal communities in grassland ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snmtlajsQ%3D%3D&md5=2056d4d5221c932a7dc55164c2eda422CAS | 17846799PubMed |