Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Low humidity is a failed treatment option for chytridiomycosis in the critically endangered southern corroboree frog

Laura A. Brannelly A C , Lee Berger A , Gerry Marrantelli B and Lee F. Skerratt A
+ Author Affiliations
- Author Affiliations

A One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld. 4810, Australia.

B Amphibian Research Centre, Pearcedale, Vic. 3912, Australia.

C Corresponding author. Email: laura.brannelly@my.jcu.edu.au

Wildlife Research 42(1) 44-49 https://doi.org/10.1071/WR14097
Submitted: 22 May 2014  Accepted: 20 March 2015   Published: 15 May 2015

Abstract

Context: One of the major drivers of the current worldwide amphibian decline and extinction crisis is the spread of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). Captive assurance colonies may be the only lifeline for some species. Current antifungal chemotherapies can be effective for clearing infection but may have detrimental side effects. The only non-chemotherapeutic treatment that has been clinically tested is heat, which is impractical for cold-adapted species. The fungus does not survive desiccation, and therefore a plausible alternative non-chemotherapeutic treatment would be a low-humidity regimen.

Aims: We tested the efficacy of a low-humidity treatment regimen for treating Bd-infected animals of the critically endangered species Pseudophryne corroboree. This species has high tolerance of dry environments, and is thus an ideal candidate for this treatment trial.

Methods: Forty frogs were exposed to 1 × 106 zoospores. At three weeks after exposure access to water was reduced to once daily for 10 days for 20 animals. Ten of these animals were also rinsed daily with the aim of removing zoospores.

Key results: The drying regimen neither increased survival nor decreased infection load, and treatment may have hastened mortality. All infected frogs died between 21 and 80 days after exposure, except one untreated frog.

Conclusions: Our results suggest that a drying regimen is not a viable treatment for chytridiomycosis. Infection may decrease the host’s ability to cope with water stress.

Implications: The failed drying treatment in P. corroboree suggests that drying is not an appropriate treatment for chytridiomycosis and treatment efforts should be focussed on chemotherapies for cold-adapted species. P. corroboree is a critically endangered species for which chytridiomycosis is the primary cause of decline, yet few experiments have been carried out on this species with regards to chytridiomycosis. All experimental information about this species and disease will benefit the management and protection of the species.

Additional keywords: dry treatment, non-chemotherapeutic treatment, Pseudophryne corroboree.


References

Baitchman, E. J., and Pessier, A. P. (2013). Pathogenesis, diagnosis and treatment of amphibian chytridiomycosis. The Veterinary Clinics of North America. Exotic Animal Practice 16, 669–685.
Pathogenesis, diagnosis and treatment of amphibian chytridiomycosis.Crossref | GoogleScholarGoogle Scholar | 24018031PubMed |

Berger, L., Hyatt, A. D., Speare, R., and Longcore, J. E. (2005). Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 68, 51–63.
Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 16465834PubMed |

Berger, L., Speare, R., Pessier, A., Voyles, J., and Skerratt, L. F. (2010). Treatment of chytridiomycosis requires urgent clinical trials. Diseases of Aquatic Organisms 92, 165–174.
Treatment of chytridiomycosis requires urgent clinical trials.Crossref | GoogleScholarGoogle Scholar | 21268978PubMed |

Bishop, P. J., Speare, R., Poulter, R., Butler, M., Speare, B. J., Hyatt, A., Olsen, V., and Haigh, A. (2009). Elimination of the amphibian chytrid fungus Batrachochytrium dendrobatidis by Archey’s frog Leiopelma archeyi. Diseases of Aquatic Organisms 84, 9–15.
Elimination of the amphibian chytrid fungus Batrachochytrium dendrobatidis by Archey’s frog Leiopelma archeyi.Crossref | GoogleScholarGoogle Scholar | 19419002PubMed |

Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T., and Hyatt, A. D. (2004). Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60, 141–148.
Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVOlsr0%3D&md5=27f88432fad30b3eb0fb580f0f30a4c2CAS | 15460858PubMed |

Brannelly, L. A., Richards-Zawacki, C. L., and Pessier, A. P. (2012). Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Diseases of Aquatic Organisms 101, 95–104.
Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2nur8%3D&md5=d1488d58ae92ba4a352b229108ea3b9eCAS | 23135136PubMed |

Campbell, C. R., Voyles, J., Cook, D. I., and Dinudom, A. (2012). Frog skin epithelium: electolyte transport and chytridiomycosis. The International Journal of Biochemistry & Cell Biology 44, 431–434.
Frog skin epithelium: electolyte transport and chytridiomycosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2ks7k%3D&md5=084853ffbae9354f12ff3701549d6bd8CAS |

Carver, S., Bell, B. D., and Waldman, B. (2010). Does chytridiomycosis disrupt amphibian skin function? Copeia 2010, 487–495.
Does chytridiomycosis disrupt amphibian skin function?Crossref | GoogleScholarGoogle Scholar |

Chatfield, M. W. H., and Richards-Zawacki, C. L. (2011). Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Diseases of Aquatic Organisms 94, 235–238.
Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs.Crossref | GoogleScholarGoogle Scholar |

Holden, W. M., Ebert, A. R., Canning, P. F., and Rollins-Smith, L. A. (2014). Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses. Applied and Environmental Microbiology 80, 4034–4041.
Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses.Crossref | GoogleScholarGoogle Scholar | 24771024PubMed |

Hunter, D. A. (2000). The conservation and demography of the southern corroboree frog (Pseudophryne corroboree). Thesis for Master of Applied Science, University of Canberra.

Hunter, D. A., Speare, R., Marantelli, G., Mendez, D., Pietsch, R., and Osborne, W. (2010a). Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened corroboree frog populations in the Australian Alps. Diseases of Aquatic Organisms 92, 209–216.
Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened corroboree frog populations in the Australian Alps.Crossref | GoogleScholarGoogle Scholar | 21268983PubMed |

Hunter, D., Marantelli, G., McFadden, M., Harlow, P., Scheele, B., and Pietsch, R. (2010b). Assessment of re-introduction methods for the southern corroboree frog in the Snowy Mountains region of Australia. Global Re-introduction Perspectives Additional Case-Studies from Around the Globe 2010, 72–76.

Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Hero, M., Hines, H., Phillott, R., Campbell, R., Marantelli, G., Gleason, F., and Colling, A. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73, 175–192.
Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslWhs7k%3D&md5=5d499f0c8c9c0e863c9ad029f454ac1cCAS | 17330737PubMed |

Johnson, M. L., Berger, L., Philips, L., and Speare, R. (2003). Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 57, 255–260.
Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1ShtL8%3D&md5=a0d3bfc95583443593998eb4d16179f6CAS | 14960039PubMed |

Jones, M. E. B., Paddock, D., Bender, L., Allen, J. L., Schrenzel, M. S., and Pessier, A. P. (2012). Treatment of chytridiomycosis with reduced-dose itraconazole. Diseases of Aquatic Organisms 99, 243–249.
Treatment of chytridiomycosis with reduced-dose itraconazole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjtb3P&md5=b0f53c095e4ac101fddd2fd4bcccabf1CAS |

Kriger, K. M., and Hero, J.-M. (2007). The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Diversity & Distributions 13, 781–788.
The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats.Crossref | GoogleScholarGoogle Scholar |

Kriger, K. M., and Hero, J.-M. (2009). Chytridiomycosis, amphibian extinctions, and lessons for the prevention of future panzootics. EcoHealth 6, 6–10.
Chytridiomycosis, amphibian extinctions, and lessons for the prevention of future panzootics.Crossref | GoogleScholarGoogle Scholar | 19421815PubMed |

Murphy, P. J., St-Hilaire, S., and Corn, P. S. (2011). Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads. Diseases of Aquatic Organisms 95, 31–42.
Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads.Crossref | GoogleScholarGoogle Scholar | 21797033PubMed |

Piotrowski, J. S., Annis, S. L., and Longcore, J. E. (2004). Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96, 9–15.
Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians.Crossref | GoogleScholarGoogle Scholar | 21148822PubMed |

Puschendorf, R., Hoskin, C. J., Cashins, S. D., McDonald, K., Skerratt, L. F., Vanderwal, J., and Alford, R. A. (2011). Environmental refuge from disease-driven amphibian extinction. Conservation Biology 25, 956–964.
Environmental refuge from disease-driven amphibian extinction.Crossref | GoogleScholarGoogle Scholar | 21902719PubMed |

Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., Hines, H. B., and Kenyon, N. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125–134.
Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs.Crossref | GoogleScholarGoogle Scholar |

Skerratt, L. F., Mendez, D., McDonald, K. R., Garland, S., Livingstone, J., Berger, L., and Speare, R. (2011). Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians. Journal of Herpetology 45, 444–450.
Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians.Crossref | GoogleScholarGoogle Scholar |

Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., and Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786.
Status and trends of amphibian declines and extinctions worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKitb7E&md5=3f2c1c5c3bdc8a1d7225721296c91e43CAS | 15486254PubMed |

Terrell, V. C. K., Engbrecht, N. J., Pessier, A. P., and Lannoo, M. J. (2014). Drought reduces chytrid fungus (Batrachochytrium dendrobatidis) infection and mortality but not prevalence in adult crawfish frogs (Lithobates areolatus). Journal of Wildlife Diseases 50, 56–62.
Drought reduces chytrid fungus (Batrachochytrium dendrobatidis) infection and mortality but not prevalence in adult crawfish frogs (Lithobates areolatus).Crossref | GoogleScholarGoogle Scholar |

Voyles, J., Berger, L., Young, S., Speare, R., Webb, R., Warner, J., Rudd, D., Campbell, R., and Skerratt, L. F. (2007). Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis. Diseases of Aquatic Organisms 77, 113–118.
Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yiu7rP&md5=6998dc145111e8e02a3f75f11df81b00CAS | 17972752PubMed |

Voyles, J., Young, S., Berger, L., Campbell, C., Voyles, W. F., Dinudom, A., Cook, D., Webb, R., Alford, R. A., Skerratt, L. F., and Speare, R. (2009). Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326, 582–585.
Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymsrbP&md5=4b8bef8ec127469e2836c0ca03b86bd9CAS | 19900897PubMed |

Wake, D. B., and Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences of the United States of America 105, 11466–11473.
Are we in the midst of the sixth mass extinction? A view from the world of amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSjtr7J&md5=cea6543ae11ff397fe33f21c9b112855CAS | 18695221PubMed |

Wardziak, T., Luquet, E., Plenet, S., Léna, J., Oxarango, L., and Joly, P. (2013). Impact of both desiccation and exposure to an emergent skin pathogen on transepidermal water exchange in the palmate newt Lissotriton helveticus. Diseases of Aquatic Organisms 104, 215–224.
Impact of both desiccation and exposure to an emergent skin pathogen on transepidermal water exchange in the palmate newt Lissotriton helveticus.Crossref | GoogleScholarGoogle Scholar | 23759559PubMed |

Woodhams, D. C., Alford, R. A., and Marantelli, G. (2003). Emerging disease of amphibians cured by elevated body temperature. Diseases of Aquatic Organisms 55, 65–67.
Emerging disease of amphibians cured by elevated body temperature.Crossref | GoogleScholarGoogle Scholar | 12887256PubMed |

Woodhams, D. C., Geiger, C. C., Reinert, L. K., Rollins-Smith, L. A., Lam, B., Harris, R. N., Briggs, C. J., Vredenburg, V. T., and Voyles, J. (2012). Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Diseases of Aquatic Organisms 98, 11–25.
Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFagsrs%3D&md5=260e74146229bf3f63cd522efc05c5ceCAS | 22422126PubMed |

Woodward, A., Berger, L., and Skerratt, L. F. (2014). In vitro sensitivity of the amphibian pathogen Batrachochytrium dendrobatidis to antifungal therapeutics. Research in Veterinary Science 97, 364–366.
In vitro sensitivity of the amphibian pathogen Batrachochytrium dendrobatidis to antifungal therapeutics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVymsbvF&md5=1517ab4f5aa522d2f6bbe6e7c71114b4CAS | 25241392PubMed |

Young, S., Speare, R., Berger, L., and Skerratt, L. F. (2012). Chloramphenicol with fluid and electrolyte therapy cures terminally ill green tree frogs (Litoria caerulea) with chytridiomycosis. Journal of Zoo and Wildlife Medicine 43, 330–337.
Chloramphenicol with fluid and electrolyte therapy cures terminally ill green tree frogs (Litoria caerulea) with chytridiomycosis.Crossref | GoogleScholarGoogle Scholar | 22779237PubMed |

Zippel, K., Johnson, K., Gagliardo, R., Gibson, R., McFadden, M., Browne, R., Martinez, C., and Towsend, E. (2011). The amphibian ark: a global community for ex situ conservation of amphibians. Herpetological Conservation and Biology 6, 340–352.