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Supplementary Material 

 This document contains supplementary material on the calibration, stabilization, and 

georectification of thermal images (S1), objectives from each prescribed fire (S2 – S4), and 

ocular estimates of fire behavior from attending fire researchers (S5). 

S1: Thermal imagery pre-processing methods 

We used a blackbody calibration source to convert the 16-bit digital numbers to temperature in 

degrees Celsius. The 16-bit pixel values ranged from 2,800 for the cold regions of the frame to 

6,000 for intense flaming areas. We chose not to use Autel’s proprietary conversion software 

because it used the compressed .jpeg thermal images and had no batch processing functionality. 

Instead, we used a blackbody calibration source to develop an algorithm to convert the thermal 

imagery from the uncompressed .tiff images. Using the blackbody, we tested the thermal camera 

using the full range of the calibrator: between 0°–100° Celsius at 5-degree increments (Fig. S1). 

The results of this bench testing confirmed the accuracy of the radiometric IR sensor and were 

used to develop a linear conversion algorithm:  

Equation S1 

𝑓(𝑥)  =  0.0982𝑥 −  268.39 

where x is the IR sensor’s reported digital number and f(x) is the calibrator temperature, 

which explained the relationship well (R2 = 0.99). We applied this equation to convert the .tiff 

pixel digital numbers to calibrated temperature. 



Figure S1: Black body calibration of the IR sensor. UAS was positioned ~2 m away from the 

black body. Temperatures were recorded from the blackbody setting and the average digital 

number was derived from the UAS IR raster. The maximum temperature of the blackbody was 

100 degrees Celsius, so we were unable to assess the performance of the sensor at higher 

temperatures. 

Next, we stabilized the imagery to coregister each image so that drift such as positional 

and rotational movement are removed. The process of orthorectifying thermal imagery of fire is 

challenging, and research to provide an open-source solution is ongoing (Moran et al. 2019; 

Valero et al. 2021; Paugam et al. 2021). We used OpenCV (Bradski 2000) and Python to test 

four transformation algorithms and the use of a fire mask to stabilize the thermal image stacks. 

The models we selected for testing have been used to coregister images for this type of 

application or were demonstrated to outperform a model previously tested for this application 

(Mahesh and Subramanyam 2012; Valero et al. 2021). We tested: KAZE, Scale-Invariant Feature 

Transform (SIFT), Enhanced Correlation Coefficient-based (ECC) with an affine transformation, 

and ECC with a homography transformation (Lowe 1999; Evangelidis and Psarakis 2008; 
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Alcantarilla et al. 2012). To generate the transformation matrix of images, we used an iterative 

method that compares image i to image i+1. A transformation matrix is then applied to each 

respective image after a buffer has been calculated, shifting images based on their transformation 

to maintain the true ground position x,y. The KAZE and SIFT algorithms use a Random Sample 

Consensus algorithm to generate a homography transformation. Additionally, we tested an affine 

and a homography transformation for the ECC algorithm. Affine transformations preserve 

parallel lines and ratio of distances, but a homography transformation is more adaptive to 

perspective shifts, such the vertical and horizontal drift of a UAS. We used a sample thermal 

image stack (Hundred Rx plot 2) to test each transformation algorithm. With ~9,000 infrared 

images, manual georectification was not possible. Therefore, to evaluate the transformation 

models, we manually selected the location of the ground control points (GCPs) of 30 images to 

compare to the first image of the image stack. Then, the positional distance of selected pixels 

from reference pixels was calculated as: 

Equation S2 

𝑑(𝑝1, 𝑝2) = √(𝑝1𝑥 − 𝑝2𝑥)2 + (𝑝1𝑦 − 𝑝2𝑦)
2

where d(p1,p2) is the Euclidian distance between points p1 and p2 and each point is broken down 

into their respective x and y pixel coordinates. We used the ECC model with an affine 

transformation to stabilize all thermal imagery hereafter. 

Using Hanna Hammock plot two imagery, we tested the performance of stabilization 

models and a fire/no-fire mask for removing positional and rotational drift from the thermal 



image stacks (Fig. S2). The SIFT algorithm with a fire pixel mask performed the best, stabilizing 

the image stack with a median Euclidian error (Equation S1) of 3.5 pixels (SD = 1.1). 

Nonetheless, we used the second-best performing stabilization model, the ECC-affine 

transformation (median = 11.1, SD = 3.4), to stabilize all the plots for analysis because it was 

notably more robust to large changes between images, such as perspective shifts from 

interruptions in sampling for battery replacements, wind, and rapid fire growth. All plots were 

processed with the ECC-affine stabilization model with no mask for further analysis. 

Figure S2: Error of the stabilization models tested: Enhanced Correlation Coefficient (ECC) with 

an affine transformation, ECC with a homography transformation, KAZE, and Scale Invariant 

Feature Transform (SIFT). Each model was tested with and without a mask that removed 

flaming areas. Error was measured using the Euclidian distance (Equation S2) of GCPs of image 



i relative to the first image (reference image) in 30 selected images from the stabilized image 

stack, expressed in pixels with a mean resolution of 12 cm. 

After image stabilization was complete, we georeferenced the image stacks using the 

locations of four GCPs visible in the thermal images (GDAL/OGR Contributors 2023). 

Transform matrices were generated manually for the first images and applied to all the stabilized 

images. If the plot was sampled for more than an hour or there was a visible shift or distortion in 

the stabilization process, the images were divided into sub-stacks, the first image was 

georeferenced, and the sub-stacks were remerged. To validate the final result of the stabilization 

and georeferencing process, we selected 30 images from each plot image stack incrementally, 

representing the entire duration of the image stack. Then, we manually identified visible GCPs in 

each image. The coordinate location of each selected point was compared to the true location of 

the nearest GCP using Equation S1 to calculate the distance error after processing (Fig. S3). The 

Root Mean Squared Error (RMSE) was calculated for each plot using the average distance error 

(Equation S2) of each of the thirty images sampled. 



Figure S3: Final stabilization results after georeferencing. While most thermal image stacks had 

less than two m of positional error relative to the ground control points, instances of significant 

positional drift were present in some image stacks. 

Once the images were georectified and converted to temperature, we processed the image 

stack from temperature to measurements of energy and power. To do this, we converted the 

radiant temperature of each pixel to fire radiative power (FRP; W m-2) using the Stephan-

Boltzmann law for grey body emitters, applied similarly in Hudak et al. (2018): 

Equation S3 

𝐹𝑅𝑃 = ϵσ(Ti
4 − 𝑇𝑏𝑖

4 ) 

where ϵ is the emissivity of the grey body, σ is the Stephan-Boltzmann constant (5.67*10-8 W m-

2 K-4), T is radiant temperature (Kelvin), and Tb is the background temperature (Kelvin). We used 

an emissivity constant of 0.98 (López et al. 2012; O’Brien et al. 2015; Moran et al. 2019). We 

elected to use a background temperature equal to the 10th percentile of pixel temperatures for 

each raster image. The background temperature (Tb) accounts for changes in surface 

temperatures from solar radiation during multi-hour IR image collection. The 10th percentile 

background temperatures were often near 300° K, the background temperature used by Hudak et 

al. (2018). 



We approximately integrated pixel-scale measurements of FRP to calculate fire radiative 

energy (FRE; MJ m-2) using the trapezoidal rule (Hudak et al. 2016, 2018), effectively 

converting power to energy: 

Equation S4 

𝐹𝑅𝐸 ≈
1

2
∑(FRPi + FRPi−1)

n

i=1

⋅ (ti − 𝑡i−1)

where consecutive FRP rasters are integrated over time, t (seconds). We used the trapezoidal rule 

because some image stacks had pauses in collection (i.e., swapping UAS batteries). Images were 

sampled every five seconds but there were some breaks in data collection when batteries were 

exchanged or, in the case of two plots, periods when there was little change in fire spread or 

energy release. 

Canopy cover, where present, occluded nearly all the thermal radiation from surface fuel 

consumption below the canopy. We removed the sub-canopy FRP pixels by masking any pixels 

that did not reach a radiative power of 1,070 W m-2, which was visually comparable to canopy 

cover of the plots (Hudak et al. 2016). To correct for the observational bias resulting from 

canopy cover occlusion, we use the un-masked area of the plot to calculate final estimates of 

consumption. For example, if a 1 ha plot has 20% canopy cover, then ~20% of the area was 

masked and fuel consumption estimates were multiplied by the proportional masked area (1.2), 

similar to Hudak et al. (2016). 



S2: Hanna Hammock prescribed fire objectives. From correspondence with Tall Timbers 

Research Station. 

From Eric Staller, Tall Timbers land manager, September 5th, 2023: “My objectives for TT burns 

are 95% fuel reduction and hardwood top kill. Limbing of pines less than 20 feet tall, and 

pushing fire deeper to drains and wetlands.” 

S3: Hundred prescribed fire objectives. From Tonto National Forest 2023 Burn Plan. 

Resource objectives: This project is consistent with direction found in the Tonto Land 

Management Plan for area 5D and 5G. The project area is within Management Area 5D and 5G 

identified in the Tonto Forest Plan (USDA, 1985, as amended). Management emphasis for this 

area is to manage for a variety of renewable natural resources with primary emphasis on wildlife 

habitat, livestock forage and dispersed recreation. Watersheds are managed to meet satisfactory 

condition. Use prescribed fire to treat vegetation for water yield, forage, and wildlife habitat 

improvement. The overall intent will be to burn 375 to 15,000 acres per year to reduce the threat 

of negative impacts to watershed functions including erosion, and reduction in herbaceous 

productivity.  

Project falls within Categorical Exclusion category 32.2 (6) Timber stand and/or wildlife 

habitat improvement activities that do not include the use of herbicides or do not require 

more than 1 mile of low standard road construction. (IV). Prescribed burning to reduce 

natural fuel build-up and improve plant vigor.  



Prescribed fire objectives: Initial entry burns will use backing fire and strip head fire in 

ponderosa pine and pinyon/juniper stands to reduce dead and down fuel loadings from 

15-20 tons per acre to 10-15 tons per acre. Reduce the under-story vegetation by 75 - 90

percent. Reduce activity slash up to 80 percent. Reduce the over story by no more than 20 

percent.  

For maintenance burning in ponderosa pine reduce dead and down fuel loadings to 5-7 

tons per acre. Reduce the under-story vegetation by 35-90 percent. Reduce the over-story 

by no more than 15 percent.  

In continuous chaparral fuel stands use head fire to reduce the over story density by 50 - 

80 percent. Achieve a mosaic burn pattern to create a range of age classes in brush stands. 

Promote herbaceous species growth by creating openings from 1 - 40 acres in size in 

accordance with the forest plan.  

Objectives should be completed post burn and will be analyzed observationally within the 

first year.  

Desired Effects: 

Range of Acceptable Results, Expressed in quantifiable terms: 

Ponderosa Pine / Pinyon/Juniper (this will be achieved with first entry and maintenance 

prescribed burning)  

• Reduce Time Lag fuel loadings, 1, 10,100, and 1000 hour by 50% - 85%.

• Reduce under story 35% - 90%.



• Retain a minimum of one snag per acre where applicable.

• Retain 75% - 100% of the desirable trees.

Chaparral Burning 

• Reduce over story density by 50% - 80%.

• Create openings of 1 to 200 acres in size with the goal of creating a variety of age

class regeneration.

• Achieve a mosaic burn pattern by varied ignition patterns.

• Reduce 1- and 10-hour time lag fuels by 1 - 5 tons per acre.

S4: Wild Bill prescribed fire objectives. From Wild Bill incident action plan. 

This Burn Plan supports retaining: 

• 2 snags per acre, greater than or equal to 30 feet high and 18-inch diameter breast

height.

• 3 logs per acre greater than or equal to 12-inch at mid-point.

• 5 to 7 tons of coarse woody debris per acre in the ponderosa pine ecosystem.

• Openings may be up to 4 acres with a maximum width of 200’.

• In the pinyon-juniper cover type, snags would be managed for one per acre over 75%

of the area and coarse woody debris of 1-3 tons per acre.

• To minimize the potential for crown fire initiation, the desired condition is to have the

average stand canopy base height above 18 feet (currently at 16').



• Presently the existing potential for crown fire is 38% through the 4FRI analysis area,

and the desired condition is to be at no more than 10%.

• High severity fire should occur on no more than 10% of the treatment area (see below

for severity definition).

S5: Prescribed fire visual observations 

We visually observed low severity fire consuming ground and surface fuels at each of the 

prescribed fires. Of the fires, the Hanna Hammock Rx had the highest observed intensity with a 

few instances of crown scorching, high rates of spread (> 8 m min-1 at peak), and head fire with 

flame lengths up to 1 m. We observed lower intensities at the Hundred Rx and Wild Bill Rx: 

rates of spread (< 2 m min-1) and fire front flame lengths (< 0.5 m) were low with the fire 

backing and flanking while consuming coarse woody debris. Post-frontal residence time (> 30 

min) was longer and fuel consumption was higher at Wild Bill and Hundred burns as many of 

the plots had large amounts of coarse woody debris present. Much of the fuel at Hanna 

Hammock was fine (litter, shrubs, and small sticks), so post-frontal combustion was on the order 

of minutes rather than hours like the burns in Arizona. 
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