Supplementary Material

Plant morphological traits and leaf nutrient concentration are associated with flammability and phylogenetic relationships in sub-alpine vegetation, New Zealand

Shanta Budha-Magar^{A,B}, Nicola J. Day^C, Hannah L. Buckley^A, Olivia R. Burge^D, Sarah J. Richardson^D, Dylan W. Schwilk^E, Ruby R. Ross^F and Timothy J. Curran^{F,*}

^ASchool of Science, Auckland University of Technology, Auckland, 1010, New Zealand

^BEnvironment Management, NorthTec, Whangārei, 0110, New Zealand

^CSchool of Biological Sciences, Victoria University of Wellington, New Zealand

^DManaaki Whenua – Landcare Research, Lincoln, New Zealand

^EDepartment of Biological Sciences, Texas Tech University, USA

^FDepartment of Pest-management and Conservation, Lincoln University, Lincoln, New Zealand

*Correspondence to: Email: <u>Timothy.Curran@lincoln.ac.nz</u>

2 Supplementary materials

3 Table S1: List of the 29 plant taxa from subalpine of South Island, New Zealand, for which flammability components ignition score, maximum temperature, burning time and burnt biomass, 4 5 leaf nutrient concentration, and shoot and leaf morphological traits were measured. All plant samples were burnt as ca. 70 cm shoots, except taxon denoted by *, which were burnt as whole 6 plants (*i.e.*, plants \leq 70 cm height), and those denoted by ** were burnt as clump (plant material 7 starting from the bottom centre of each individual and including dead plant biomass and all other 8 9 branches and stems). Taxon codes are the first three letters of each of genus and species epithet. 10 Bold taxon codes denote those taxa for which leaf nutrient concentration data were obtained from 11 Richardson et al. (unpublished data). Note that some data are presented at the genus level only, 12 consistent with the permanent plot vegetation data (Burge et al. 2020). Taxon names, family, 13 authority, and growth form were taken from Flora of New Zealand (http://nzflora.info) and New

14 Zealand Plant Conservation Network (<u>https://www.nzpcn.org.nz</u>).

Taxon name	Family	Code
Ferns and lycophytes		
*Blechnum minus (R.Br.) Ettingsh.	Blechnaceae	BLEmin
**Polystichum vestitum (G.Forst.) C.Presl	Dryopteridaceae	POLves
*Lycopodium scariosum G.Forst.	Lycopodiaceae	LYCsca
Grasses		
**Poa colensoi Hook.f.	Poaceae	POAcol
*Agrostis species	Poaceae	AGRost
Rytidosperma species	Poaceae	RYTido
**Chionochloa conspicua (G.Forst.) Zotov	Poaceae	CHIcon
**Chionochloa rubra Zotov	Poaceae	CHIrub
Forbs		
*Anisotome haastii (F.Muell.) Cockayne & Laing	Apiaceae	ANIhaa
**Phormium cookianum Le Jol.	Asphodelaceae	PHOcoo
**Astelia nervosa Hook.f.	Asteliaceae	ASTner
*Celmisia armstrongii Petrie	Asteraceae	CELarm
*Celmisia discolor Hook.f.	Asteraceae	CELdis
*Ourisia macrophylla Hook.	Plantaginaceae	OURmap

Taxon name	Family	Code
Shrubs		
Brachyglottis elaeagnifolia (Hook.f.) B.Nord.	Asteraceae	BRAela
<i>Dracophyllum longifolium</i> (J.R.Forst. & G.Forst.) R.Br. ex Roemer & Schult.	Ericaceae	DRAlon
Dracophyllum traversii Hook.f.	Ericaceae	DRAtra
Dracophyllum uniflorum Hook.f.	Ericaceae	DRAuni
Gaultheria rupestris (L.f.) D.Don	Ericaceae	GAUrup
Veronica subalpina Cockayne	Plantaginaceae	VERsub
Podocarpus nivalis Hook.	Podocarpaceae	PODniv
Myrsine nummularia (Hook.f.) Hook.f.	Primulaceae	MYRnum
Coprosma foetidissima J.R.Forst. & G.Forst.	Rubiaceae	COPfoe
Coprosma serrulata Hook.f. ex-Buchanan	Rubiaceae	COPser
Pimelea oreophila C.J.Burrows	Thymelaeaceae	PIMore
Trees		
Pseudopanax colensoi (Hook.f.) Philipson	Araliaceae	NEOcol
Fuscospora cliffortioides (Hook.f.) Heenan & Smissen	Nothofagaceae	FUScli
Phyllocladus alpinus Hook.f.	Podocarpaceae	PHYalp
Myrsine divaricata A.Cunn.	Primulaceae	MYRdiv

Table S2: Summary of flammability variables (ignition score, time taken to ignite sample minus 10; maximum temperature recorded during burning (°C); burning time (seconds); and burnt biomass (% of biomass consumed) of 26 taxa from subalpine of South Island, New Zealand. Taxon codes are given in supplementary Table S1. The values for each trait are represented by mean (\pm SE) for each taxon. Flammability data were obtained from six individual plants for each taxon. Species that were used from Curran et al. unpublished are not included in this table. Species are ranked in the table by PC1 score, with higher PC1 scores reflecting higher flammability.

Code	Ignition score (s)	Maximum temper- ature (°C)	Burning time (s)	Burnt bio- mass (%)	Flammability PC1
PHYalp	8.8 ± 0.48	625 ± 61.47	136 ± 38.39	53.8 ± 11.97	2.76
CHIrub	6.9 ± 1.78	553.4 ± 24.8	162.7 ± 24.47	49.7 ± 9.65	2.29
CELdis	9.9 ± 0.00	451.3 ± 20.66	37.7 ± 11.9	75.8 ± 10.12	2.06
LYCsca	9.8 ± 0.17	497.3 ± 35.95	44.3 ± 15.71	55.2 ± 14.2	1.78
PHOcoo	6.7 ± 1.8	443.8 ± 73.37	218.3 ± 128.52	20 ± 9.75	1.53
MYRnum	9.3 ± 0.21	465.7 ± 40.25	14.2 ± 2.2	54.2 ± 15.41	1.34
CELarm	8.8 ± 0.6	467.7 ± 68.87	79.8 ± 38.59	21.5 ± 6.37	0.98

Code	Ignition score (s)	Maximum temper- ature (°C)	Burning time (s)	Burnt bio- mass (%)	Flammability PC1
POLves	9.5 ± 0.22	429 ± 58.17	32.5 ± 13.08	36.3 ± 10.02	0.94
DRAlon	9.2 ± 0.65	451.2 ± 76.68	48 ± 13.41	26.2 ± 8.89	0.85
DRAuni	9.2 ± 0.54	415.2 ± 94.22	49.8 ± 14.38	30.8 ± 13.86	0.83
CHIcon	9.7 ± 0.33	419.3 ± 40.99	93.5 ± 17.99	11.2 ± 5.23	0.77
GAUrup	9.7 ± 0.21	433.5 ± 44.13	18.2 ± 6.15	30 ± 7.42	0.73
PODniv	9 ± 0.63	428.3 ± 88.88	41.7 ± 22.4	24.7 ± 11.36	0.65
FUScli	9.5 ± 0.22	417.5 ± 54.52	26.8 ± 6.86	21.8 ± 9.82	0.51
BLEmin	7.2 ± 1.6	460.8 ± 74.72	11.2 ± 5.47	29.2 ± 7	0.40
VERsub	8.5 ± 0.43	277.5 ± 29.47	33 ± 17.61	10.8 ± 3.16	-0.40
POAcol	5 ± 2.24	159.2 ± 4.78	3.3 ± 1.74	49.2 ± 22	-0.69
DRAtra	3.4 ± 1.33	308.4 ± 42.11	22.8 ± 11.13	3.2 ± 1.77	-1.27
ASTner	3.2 ± 2.01	202.2 ± 34.77	30.3 ± 22.98	2.8 ± 2.46	-1.68
MYRdiv	3.7 ± 2.03	201 ± 31.61	3.5 ± 2.06	0.8 ± 0.4	-1.85
NEOcol	1.5 ± 1.02	253.8 ± 66.42	11.7 ± 7.74	1.2 ± 0.83	-1.89
OURmap	1.7 ± 1.67	170 ± 20	1.7 ± 1.67	2.5 ± 2.5	-2.24
BRAela	1.2 ± 0.75	166.2 ± 14.26	1 ± 0.68	1.5 ± 1.31	-2.35
COPfoe	1.2 ± 0.83	167.5 ± 11.34	1.3 ± 0.88	0.3 ± 0.21	-2.37
COPser	0.5 ± 0.5	152.7 ± 2.67	0.7 ± 0.67	0.3 ± 0.33	-2.53
ANIhaa	0 ± 0.00	150 ± 0.00	0 ± 0.00	0 ± 0.00	-2.63

24 Table S3: Mean (± standard error) morphological (leaf and shoot) trait values for 26 plant taxa from subalpine of South Island, New Zealand that

25 we used for flammability and leaf nutrient trait measurement. Taxon codes are given in supplementary Table S1. Abbreviations of

26 morphological traits are twig dry matter content (TDMC; g g⁻¹), bulk density (BD; g cm⁻³), % moisture content (MC), % dead material (Dm),

27 leaf length (LL; cm), leaf thickness (LT mm), leaf area (LA; cm²), leaf dry matter content (LDMC; g g⁻¹), specific leaf area (SLA; cm² g⁻¹). Taxa

28 for which we used data from previous data set of Padullés Cubino *et al.* (2018) are not included in this table.

Code	Shoot morphological traits			Leaf morphological traits					
	BD	TDMC	MC	Dm	LA	LL	LT	LDMC	SLA
ANIhaa	0.058 ± 0.035	0.2 ± 0.02	148.5 ± 17.63	0 ± 0.00	1.4 ± 0.37	1.5 ± 0.15	0 ± 0.00	0.3 ± 0.02	289.4 ± 37.21
ASTner	0.01 ± 0.002	0.3 ± 0.02	144.6 ± 15.94	11.7 ± 7.49	176.8 ± 42.6	65.3 ± 8.41	0.1 ± 0.03	0.3 ± 0.01	68.9 ± 10.76
BLEmin	0.003 ± 0000	0.3 ± 0.01	32 ± 15.14	2 ± 1.63	16.6 ± 1.34	11.0 ± 0.35	0 ± 0.00	0.3 ± 0.01	125.4 ± 18.88
BRAela	0.005 ± 0.001	0.3 ± 0.01	161.2 ± 28.49	0.8 ± 0.65	24.2 ± 1.6	7.8 ± 0.39	0.1 ± 0.00	0.3 ± 0.01	93.4 ± 15.17
CELarm	0.014 ± 0.001	0.3 ± 0.05	62.7 ± 8.53	8.5 ± 3.95	29.6 ± 4.31	21.8 ± 1.83	0.1 ± 0.00	0.4 ± 0.01	54.9 ± 6.37
CELdis	0.014 ± 0.002	0.3 ± 0.02	39.8 ± 8.65	25.7 ± 6.18	1.6 ± 0.14	2.1 ± 0.12	0 ± 0.00	0.4 ± 0.01	71.6 ± 4.23
CHIcon	0.038 ± 0.003	0.4 ± 0.01	89.4 ± 6.59	45 ± 5.00	30.4 ± 5.36	94.4 ± 4.46	0 ± 0.00	0.4 ± 0.01	24.6 ± 2.26
CHIrub	0.047 ± 0.007	0.7 ± 0.01	42.7 ± 6.02	27 ± 8.15	3.9 ± 0.43	81.9 ± 5.53	0.1 ± 0.00	0.5 ± 0.02	8.6 ± 0.74
COPfoe	0.001 ± 0.000	0.3 ± 0.00	$113.1{\pm}~8.57$	0 ± 0.00	3.8 ± 0.27	3.6 ± 0.12	0 ± 0.00	0.3 ± 0.00	159.8 ± 9.43
COPser	0.006 ± 0.001	0.3 ± 0.01	100.1 ± 2.18	0 ± 0.00	8.1 ± 1.09	4.2 ± 0.34	0.1 ± 0.00	0.4 ± 0.01	51.5 ± 2.24
DRAlon	0.007 ± 0.001	0.6 ± 0.06	48 ± 2.65	1 ± 0.37	1.3 ± 0.19	9 ± 0.79	0 ± 0.00	0.5 ± 0.01	58.8 ± 13.81
DRAtra	0.005 ± 0.001	0.4 ± 0.04	84.7 ± 11.85	0.8 ± 0.8	104.2 ± 7.95	52.6 ± 1.7	0.1 ± 0.01	0.5 ± 0.01	53.6 ± 2.83
DRAuni	0.007 ± 0.001	0.5 ± 0.03	50.7 ± 4.08	3.3 ± 1.52	0.5 ± 0.15	3.8 ± 0.15	0 ± 0.00	0.5 ± 0.01	88.1 ± 25.25
FUScli	0.002 ± 0.000	0.4 ± 0.07	56.6 ± 8.16	0.5 ± 0.34	0.6 ± 0.06	1.0 ± 0.06	0 ± 0.01	0.4 ± 0.02	106.7 ± 4.85

Code	Shoot morphological traits			Leaf morpholo	af morphological traits				
	BD	TDMC	MC	Dm	LA	LL	LT	LDMC	SLA
GAUrup	0.005 ± 0.001	0.4 ± 0.01	63.2 ± 4.76	2.5 ± 1.12	1 ± 0.09	1.7 ± 0.07	0.1 ± 0.00	0.4 ± 0.01	44.7 ± 2.93
LYCsca	0.005 ± 0.002	0.4 ± 0.01	32.5 ± 6.48	0 ± 0.00	0 ± 0.00	0.4 ± 0.02	0.1 ± 0.01	0.4 ± 0.02	127.4 ± 16.54
MYRdiv	0.002 ± 0.000	0.3 ± 0.06	61 ± 7.53	0.2 ± 0.17	0.7 ± 0.07	1.0 ± 0.04	0.0 ± 0.00	0.3 ± 0.01	158.5 ± 5.73
MYRnum	0.004 ± 0.001	0.4 ± 0.01	46.4 ± 7.43	0.5 ± 0.34	1.6 ± 0.73	0.9 ± 0.03	0.0 ± 0.00	0.4 ± 0.02	317.9 ± 149.9
NEOcol	0.009 ± 0.002	0.4 ± 0.02	124.5 ± 6.8	0 ± 0.00	24.1 ± 3.35	8.5 ± 0.56	0.1 ± 0.00	0.4 ± 0.01	51.5 ± 4.00
OURmap	0.037 ± 0.006	0.2 ± 0.01	134.5 ± 25.54	0 ± 0.00	47.5 ± 8.2	9.7 ± 0.8	0.1 ± 0.00	0.2 ± 0.01	100.6 ± 13.94
PHOcoo	0.03 ± 0.005	0.4 ± 0.01	76.5 ± 7.73	35 ± 8.47	294.9 ± 69	74.1 ± 5.02	0.1 ± 0.00	0.4 ± 0.02	30.3 ± 4.8
PHYalp	0.007 ± 0.002	0.4 ± 0.01	53 ± 3.98	0.8 ± 0.31	1.7 ± 0.22	2.6 ± 0.12	0.1 ± 0.00	0.5 ± 0.01	46.4 ± 3.82
POAcol	0.021 ± 0.01	0.4 ± 0.02	43.7 ± 17.56	0.5 ± 0.34	0.3 ± 0.02	5.7 ± 0.35	0.0 ± 0.00	0.4 ± 0.01	89.3 ± 9.55
PODniv	0.003 ± 0.001	0.4 ± 0.01	45.1 ± 3.22	0 ± 0.00	0.2 ± 0.03	1.1 ± 0.09	0.0 ± 0.01	0.4 ± 0.02	71.4 ± 12.15
POLves	0.004 ± 0.00	0.3 ± 0.01	64.1 ± 11.69	8 ± 4.58	0.4 ± 0.11	1.0 ± 0.11	0.0 ± 0.00	0.3 ± 0.01	178.9 ± 45.49
VERsub	0.016 ± 0.011	0.5 ± 0.01	104.5 ± 7.88	1.5 ± 0.56	1 ± 0.08	2.3 ± 0.13	0.1 ± 0.00	0.4 ± 0.01	55.7 ± 5.2

30	Table S4: List of all 29 plant taxa from subalpine of South Island, New Zealand, for which
31	DNA sequences were downloaded from National library of medicine (NCBI)
32	(https://www.ncbi.nlm.nih.gov). DNA sequence accession number represents the DNA
33	sequence identifier number in NCBI and sequence length represents base pairs in the
34	sequence. Taxa denoted by asterik (*) represent those taxa for which DNA sequences of
35	another species within same genus found in New Zealand were downloaded. For example for
36	Agrostis spp., rbcl DNA sequence of Agrostis magellanica found in New Zealand was
37	downloaded. For the species Pimelea oreophila denoted by **, rbcl DNA sequence of

38 <i>Daphne bholua</i> within same family was downloaded.	
--	--

Таха	DNA sequence accession number	Sequence length
Agrostis species*	MG226663.1	552
Anisotome haastii	JQ933219.1	1,383
Astelia nervosa	MZ047944.1	1,323
Blechnum minus	AB040569.1	1,301
Brachyglottis elaeagnifolia*	JQ933243.1	1,321
Celmisia armstrongii*	JQ933257.1	1,383
Celmisia discolor*	JQ933257.1	1,383
Chionochloa conspicua*	EU400657.1	703
Chionochloa rubra	EU400657.1	1,308
Coprosma foetidissima	MK141475.1	1,398
Coprosma serrulata*	MK141482.1	1,107
Dracophyllum longifolium	L12614.2	1,398
Dracophyllum traversii	GQ392928.1	1,402
Dracophyllum uniflorum*	GQ392918.1	1,402
Fuscospora cliffortioides*	L13363.2	1,345
Gaultheria rupestris*	AF124574	1,310
Lycopodium scariosum*	MG560491.1	1,247
Myrsine divaricata*	KT626747.1	1,284
Myrsine nummularia*	KT626747.1	1,284
Pseudopanax colensoi	FJ470147.1	1,281
Ourisia macrophylla	KT626825.1	1,324
Phormium cookianum*	HQ182444.1	1,449
Phyllocladus alpinus	AY442151	1,324

Taxa	DNA sequence accession number	Sequence length
Pimelea oreophila**	MG833726.1	748
Poa colensoi*	KC483588.1	552
Podocarpus nivalis	AF249619.1	1,330
Polystichum vestitum	AY300099.1	1,203
Rytidosperma species*	GQ471701.1	1,291
Veronica subalpina	AJ389604.1	1,317

39 Table S5: Loadings of the four measurements of leaf and shoot/whole flammability for the 29

- 40 taxa from subalpine of South Island, New Zealand on the first two principal components of
- 41 PCA on flammability (Fig. 1).

Flammability traits	PC1	PC2
Percent variance explained	66.15 %	20.98 %
Ignition score	0.83	-0.31
Maximum temperature (°C)	0.94	0.09
Burnt time (s)	0.60	0.78
Burnt biomass (%)	0.84	-0.35

42

Fig. S1: Box plot of relative flammability (PC1) for all individuals of the 29 plant taxa from
subalpine of South Island, New Zealand. The first and second principal components
explained 57.39% and 21.28% of the individual specimen level variation in relative
flammability. The size of box represents flammability PC1 variation within taxon. Points
represent outliers within taxa.

48

Fig. S2: Phylogenetic tree for the 29 taxa of vascular plants from subalpine, South Island,
New Zealand. The phylogenetic relatedness of 29 taxa were obtained from an R package
'phangorn'. Branch lengths represent evolutionary distance. Nodes represent group of the
taxon that have a common ancestor. Tip labels represent plant taxon.

54 Fig. S3: Principal component analysis (PC1 and PC3; PC2 and PC3) of the mean scores for each taxon based on measurement leaf (green) and

- 55 shoot (purple) morphological traits for the 29 taxa from subalpine of South Island, New Zealand. Taxon codes are the first three letters of each of
- 56 genus and species epithet as code (see full species list, supplementary Table S1). PC1 represents leaf dimensions (LL, LA and LT), PC2
- 57 represents moisture content. Trait abbreviations are given in Fig. 5.

Fig. S4: Pearson correlation coefficients for pairwise comparisons of plant 59 60 flammability, leaf nutrient concentrations and leaf morphology and shoot traits for the 61 29 plant taxa from subalpine of South Island, New Zealand, in addition to their 62 correlations with principal components from PCA of each variable set. Trait 63 abbreviations are given in Fig. 5. PC1 flam explained 66.15% of the total variation and 64 PC2 flam explained 20.98%. PC1 nutrients explained 52.56% of the variation among taxa in leaf nutrient concentrations, and PC2 nutrients explained 26.64%. PC1 morph 65 66 explained 31.54% of the variation among taxa in leaf and shoot morphological traits, 67 PC2 morph explained 22.91%, and PC3 morph explained 14.88%. Square box colour 68 represents positive (blue) to negative (red) correlation among flammability, leaf, shoot 69 and leaf nutrient traits. Critical value of correlation (r) for 29 taxa is 0.34.