Combined effect of intercropping and minimum tillage on soil carbon sequestration and organic matter pools in the semiarid region of Brazil
Stoécio Malta Ferreira Maia A E , Adriana Tamie Otutumi B , Eduardo de Sá Mendonça C , Júlio César Lima Neves D and Teógenes Senna de Oliveira DA Federal Institute of Education, Science and Technology of Alagoas, Rua Lourival Alfredo, 176, 57160-000, Marechal Deodoro, Alagoas, Brazil.
B Soil Science Department, Federal University of Ceará, Fortaleza, Ceará, Brazil.
C Department of Plant Production, Federal University of Espírito Santo, 29500-000, Alegre, Espírito Santo, Brazil.
D Soil Science Department, Federal University of Viçosa, Avenida P. H. Rolfs, s/n, 36570-000, Viçosa, Minas Gerais, Brazil.
E Corresponding author. Email: stoecio.maia@ifal.edu.br
Soil Research 57(3) 266-275 https://doi.org/10.1071/SR17336
Submitted: 17 December 2017 Accepted: 4 February 2019 Published: 14 March 2019
Abstract
This study aimed to evaluate the effect of two intercropping systems and minimum soil tillage in the semiarid region of Brazil on soil organic carbon (SOC) and pools of soil organic matter (SOM), compared with the native vegetation (NV). The first intercropping was cultivated with beans, sesame and pigeon pea, whereas the second was cultivated with cotton, maize, beans, sesame and pigeon pea. Two areas under NV, adjacent to the crop areas, were also sampled. Soil sampling were collected from 0–5, 5–10, 10–20, 20–30 and 30–50 cm layers in three plots per area to characterise the SOM (SOC, soil nitrogen, humic substances, microbial biomass, and mineralisable carbon). Our results demonstrated that, when compared with the NV, intercropping systems conducted with minimum soil tillage were effective in maintaining and sometimes increasing the levels and stocks of SOC and some SOM fractions such as microbial C and humic substances, and therefore, these systems can be an alternative form of sustainable soil management in the semiarid region of Brazil.
Additional keywords: semiarid soils, soil organic matter, soil quality, soil tillage.
References
Anderson-Teixeira KJ, Davis SC, Master MD, Dulucia EH (2009) Changes in soil organic carbon under biofuel crops. Global Change Biology. Bioenergy 1, 75–96.| Changes in soil organic carbon under biofuel crops.Crossref | GoogleScholarGoogle Scholar |
Balota EL, Colozzi-Filho A, Andrade DS, Hungria M (1998) Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucessão de culturas. Revista Brasileira de Ciência do Solo 22, 641–649.
| Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucessão de culturas.Crossref | GoogleScholarGoogle Scholar |
Bayer C, Mielniczuk J (2008) Dinâmica e função da matéria orgânica. In ‘Fundamentos da Matéria Orgânica do Solo’. (Eds GA Santos, LS Silva, LP Canellas, FAO Camargo) pp. 7–18. (Metrópole: Porto Alegre) [In Portuguese]
BRASIL (1973) Levantamento Exploratório Reconhecimento de Solos do Ceará, 1. Recife. (MA, Boletim Técnico, 28. Série Pedologia, 16) Ministério da Agricultura [In Portuguese]
Bremner JM, Mulvaney CS (1982) Nitrogen—total. In ‘Methods of soil analysis’. (Ed. AL Page) pp. 595–624. (American Society of Agronomy: Madison, WI)
Camilli B, Dell’Abate MT, Mocali S, Fabiani A, Dazzi C (2016) Evolution of organic carbon pools and microbial diversity in hyperarid anthropogenic soils. Journal of Arid Environments 124, 318–331.
| Evolution of organic carbon pools and microbial diversity in hyperarid anthropogenic soils.Crossref | GoogleScholarGoogle Scholar |
Campiglia E, Mancinelli R, De Stefanis E, Pucciarmati S, Radicetti E (2015) The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crops Research 176, 34–44.
| The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy.Crossref | GoogleScholarGoogle Scholar |
Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, Crozat Y, Gooding M, Ambus P, Dahlmann C, von Fragstein P, Pristeri A, Monti M, Jensen ES (2011) The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crops Research 122, 264–272.
| The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability.Crossref | GoogleScholarGoogle Scholar |
El Tahir BA, Ahmed DM, Ardo J, Gaafar AM, Salih AA (2009) Changes in soil properties following conversion of Acacia senegal plantation to other land management systems in North Kordofan State, Sudan. Journal of Arid Environments 73, 499–505.
| Changes in soil properties following conversion of Acacia senegal plantation to other land management systems in North Kordofan State, Sudan.Crossref | GoogleScholarGoogle Scholar |
EMBRAPA (1999) ‘Manual de análises químicas de solos, plantas e fertilizantes.’ (EMBRAPA Solos: Rio de Janeiro) 370p. [In Portuguese]
ESPLAR (1998) Pesquisa and desenvolvimento de sistemas agroecológicos de cultivo do algodoeiro (Gossypium hirsutum), com agricultores familiares do semi-árido cearense. Relatório de Andamento das Atividades. (ESPLAR: Fortaleza) 74p. [In Portuguese]
FAO (2012) CA adoption worldwide: global overview of conservation agriculture adoption. Available at http://www.fao.org/ag/ca/6c.html [verified 2 May 2016].
Ferreira AS, Camargo FAO, Vidor C (1999) Utilização de microondas na avaliação da biomassa microbiana do solo. Revista Brasileira de Ciência do Solo 23, 991–996.
| Utilização de microondas na avaliação da biomassa microbiana do solo.Crossref | GoogleScholarGoogle Scholar |
Ghaley BB, Hauggaard-Nielsen H, Hogh-Jensen H, Jensen ES (2005) Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutrient Cycling in Agroecosystems 73, 201–212.
| Intercropping of wheat and pea as influenced by nitrogen fertilization.Crossref | GoogleScholarGoogle Scholar |
Gregorich EG, Zech W (1990) Turnover of carbon through the microbial biomass in soils with different textures. Soil Science Society of America Journal 12, 28–34.
Guimarães DV, Gonzaga MIS, Silva TO, Silva TL, Dias NS, Matias MIS (2013) Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research 126, 177–182.
| Soil organic matter pools and carbon fractions in soil under different land uses.Crossref | GoogleScholarGoogle Scholar |
Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil Fertility and Fertilizers An Introduction to Nutrient Management. (Pearson Prentice Hall: Upper Saddle River, NJ)
Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology 30, 207–222.
| Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover.Crossref | GoogleScholarGoogle Scholar |
Kurothe RS, Kumar G, Singh R, Singh HB, Tiwari SP, Vishwakarma AK, Sena DR, Pande VC (2014) Effect of tillage and cropping systems on runoff, soil loss and crop yields under semi-arid rainfed agriculture in India. Soil & Tillage Research 140, 126–134.
| Effect of tillage and cropping systems on runoff, soil loss and crop yields under semi-arid rainfed agriculture in India.Crossref | GoogleScholarGoogle Scholar |
Lal R (2008) Carbon sequestration. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 815–830.
| Carbon sequestration.Crossref | GoogleScholarGoogle Scholar | 17761468PubMed |
Leite LFC (2002) Compartimentos e dinâmica da matéria orgânica do solo sob diferentes manejos e sua simulação pelo modelo Century. PhD Thesis, Universidade Federal de Viçosa, Brazil. [In Portuguese]
Lima HV, Oliveira TS, Oliveira MM, Mendonça ES, Lima PJBF (2007) Indicadores de qualidade do solo em sistemas de cultivo orgânico e convencional no semi-árido cearense. Revista Brasileira de Ciência do Solo 31, 1085–1098.
| Indicadores de qualidade do solo em sistemas de cultivo orgânico e convencional no semi-árido cearense.Crossref | GoogleScholarGoogle Scholar |
Longo RM, Espíndola CR (2000) C-orgânico, N-total e substâncias húmicas sob influência da introdução de pastagens (Brachiaria sp.) em áreas de Cerrado e Floresta Amazônica. Revista Brasileira de Ciência do Solo 24, 723–729.
| C-orgânico, N-total e substâncias húmicas sob influência da introdução de pastagens (Brachiaria sp.) em áreas de Cerrado e Floresta Amazônica.Crossref | GoogleScholarGoogle Scholar |
Lützow M. v., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H. (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science 57, 426–445.
| Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review.Crossref | GoogleScholarGoogle Scholar |
Maia SMF, Xavier FAS, Oliveira TS, Mendonça ES, Araújo Filho JA (2006) Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semiárido cearense. Revista Árvore 30, 837–848.
| Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semiárido cearense.Crossref | GoogleScholarGoogle Scholar |
Maia SMF, Xavier FAS, Oliveira TS, Mendonça ES, Araújo Filho JA (2007) Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforestry Systems 71, 127–138.
| Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil.Crossref | GoogleScholarGoogle Scholar |
Maia SMF, Carvalho JLN, Cerri CEP, Lal R, Bernoux M, Galdos MV, Cerri CC (2013) Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes. Soil & Tillage Research 133, 75–84.
| Contrasting approaches for estimating soil carbon changes in Amazon and Cerrado biomes.Crossref | GoogleScholarGoogle Scholar |
Malavolta E, Vitti GC, de Oliveira SA (1989) ‘Avaliação do estado nutricional das plantas: princípios e aplicações.’(Potafós: Piracicaba) [In Portuguese]
MEA (2005) ‘Ecosystems and human well-being: desertification synthesis. A report of the Millennium Ecosystem Assessment.’ (World Resources Institute: Washington, DC)
Medeiros SS, Cavalcante AMB, Marin AMP, Tinoco LBM, Salcedo IH, Pinto TF (2012) ‘Sinopse do Censo Demográfico para o Semiárido Brasileiro.’ (INSA: Campina Grande, Brazil) [In Portuguese]
Morris NL, Miller PCH, Orsen JH, Fraud Williams RJ (2010) The adoption of noninversion tillage system in United Kingdom and the agronomic impact on soil, crops and environment – a review. Soil & Tillage Research 108, 1–15.
| The adoption of noninversion tillage system in United Kingdom and the agronomic impact on soil, crops and environment – a review.Crossref | GoogleScholarGoogle Scholar |
Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72, 87–121.
| Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions.Crossref | GoogleScholarGoogle Scholar |
Ojiem JO, Franke AC, Vanlauwe B, de Ridder N, Giller KE (2014) Benefits of legume–maize rotations: assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Research 168, 75–85.
| Benefits of legume–maize rotations: assessing the impact of diversity on the productivity of smallholders in Western Kenya.Crossref | GoogleScholarGoogle Scholar |
Panettieri M, Knicher H, Murillo JM, Madejón E, Hatcher PG (2014) Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS 13C NMR. Soil Biology & Biochemistry 78, 170–181.
| Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS 13C NMR.Crossref | GoogleScholarGoogle Scholar |
Pimentel-Gomes F (1987) ‘Curso de estatística experimental.’ 12th edn. (FEALQ: Piracicaba) 467p. [In Portuguese]
Plaza-Bonilla D, Cantero-Martínez C, Viñas P, Álvaro-Fuentes K (2013) Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194, 76–82.
| Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions.Crossref | GoogleScholarGoogle Scholar |
Qiu L, Wei X, Zhang X, Cheng J, Gale W, Guo C, Long T (2012) Soil organic carbon losses due to land use change in a semi-arid grassland. Plant and Soil 355, 299–309.
| Soil organic carbon losses due to land use change in a semi-arid grassland.Crossref | GoogleScholarGoogle Scholar |
Rathore VS, Singh JP, Meel B, Nathawat NS (2014) Agronomic and economic performances of different cropping systems in a hot, arid environment: a case study from north-western Rajasthan, India. Journal of Arid Environments 105, 75–90.
| Agronomic and economic performances of different cropping systems in a hot, arid environment: a case study from north-western Rajasthan, India.Crossref | GoogleScholarGoogle Scholar |
Rühlemann L, Schmidtke K (2015) Evaluation of monocropped and intercropped grain legumes for cover cropping in no-tillage and reduced tillage organic agriculture. European Journal of Agronomy 65, 83–94.
| Evaluation of monocropped and intercropped grain legumes for cover cropping in no-tillage and reduced tillage organic agriculture.Crossref | GoogleScholarGoogle Scholar |
Silva JV (2010) Sustentabilidade de sistemas de produção agrícola em bases agroecológicas, no semi-árido cearense. MSc Thesis, Universidade Federal do Ceará, Brazil. [In Portuguese]
Sisti CPJ, Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil & Tillage Research 76, 39–58.
| Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil.Crossref | GoogleScholarGoogle Scholar |
Sousa AF (2006) Indicadores de sustentabilidade em sistemas agroecológicos por agricultores familiares do semi-árido cearense. MSc Thesis, Universidade Federal do Ceará, Brazil. [In Portuguese]
Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research 30, 195–207.
| Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter.Crossref | GoogleScholarGoogle Scholar |
Sparling GP, West AW (1988) A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biology & Biochemistry 20, 337–343.
| A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells.Crossref | GoogleScholarGoogle Scholar |
Swift RS (1996) Organic matter characterization. In ‘Methods of soil analysis. Part 3: chemical methods’. (Eds DL Sparks, AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Summer) pp. 1011–1020. (Soil Science Society of America: Madison, WI)
Thomazini A, Mendonça ES, Cardoso IM, Garbin ML (2015) SOC dynamic and soil quality index of agroforestry systems in the Atlantic rainforest of Brazil. Geoderma Regional 5, 15–24.
| SOC dynamic and soil quality index of agroforestry systems in the Atlantic rainforest of Brazil.Crossref | GoogleScholarGoogle Scholar |
Vargas LK, Scholles D (1998) Nitrogênio da biomassa microbiana, em solo sob diferentes sistemas de manejo, estimado por métodos de fumigação. Revista Brasileira de Ciência do Solo 22, 411–417.
| Nitrogênio da biomassa microbiana, em solo sob diferentes sistemas de manejo, estimado por métodos de fumigação.Crossref | GoogleScholarGoogle Scholar |
Vrignon-Brenas S, Celette F, Piquet-Pissaloux A, Jeuffroy MH, David C (2016) Early assessment of ecological services provided by forage legumes in relay intercropping. European Journal of Agronomy 75, 89–98.
| Early assessment of ecological services provided by forage legumes in relay intercropping.Crossref | GoogleScholarGoogle Scholar |
Xavier FAS, Maia SMF, Oliveira TS, Mendonça ES (2006) Biomassa microbiana e matéria organânica levee m solos sob sistemas agrícolas orgânico e convencional na Chapada da Ibiapaba – CE. Revista Brasileira de Ciência do Solo 30, 247–258.
| Biomassa microbiana e matéria organânica levee m solos sob sistemas agrícolas orgânico e convencional na Chapada da Ibiapaba – CE.Crossref | GoogleScholarGoogle Scholar |
Yang JE, Skogley EO, Schaff BE, Kim JJ (1998) A simple spectrophotometric determination of nitrate in water, resin, and soil extracts. Soil Science Society of America Journal 62, 1108–1115.
| A simple spectrophotometric determination of nitrate in water, resin, and soil extracts.Crossref | GoogleScholarGoogle Scholar |
Yemadje PL, Guibert H, Chevallier T, Deleporte P, Bernoux M (2016) Effect of biomass management regimes and wetting-drying cycles on soil carbon mineralization in a Sudano-Sahelian region. Journal of Arid Environments 127, 1–6.
| Effect of biomass management regimes and wetting-drying cycles on soil carbon mineralization in a Sudano-Sahelian region.Crossref | GoogleScholarGoogle Scholar |
Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis 19, 1467–1476.
| A rapid and precise method for routine determination of organic carbon in soil.Crossref | GoogleScholarGoogle Scholar |