Humus, nitrogen and energy balances, and greenhouse gas emissions in a long-term field experiment with compost compared with mineral fertilisation
Eva Erhart A C , Harald Schmid B , Wilfried Hartl A and Kurt-Jürgen Hülsbergen BA Bio Forschung Austria, Esslinger Hauptstrasse 132, A-1220 Vienna, Austria.
B Lehrstuhl für Ökologischen Landbau und Pflanzenbausysteme, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität München, Liesel-Beckmann Straße 2, D-85350 Freising, Germany.
C Corresponding author. Email: e.erhart@bioforschung.at
Soil Research 54(2) 254-263 https://doi.org/10.1071/SR15127
Submitted: 1 May 2015 Accepted: 7 October 2015 Published: 22 March 2016
Abstract
Compost fertilisation is one way to close material cycles for organic matter and plant nutrients and to increase soil organic matter content. In this study, humus, nitrogen (N) and energy balances, and greenhouse gas (GHG) emissions were calculated for a 14-year field experiment using the model software REPRO. Humus balances showed that compost fertilisation at a rate of 8 t/ha.year resulted in a positive balance of 115 kg carbon (C)/ha.year. With 14 and 20 t/ha.year of compost, respectively, humus accumulated at rates of 558 and 1021 kg C/ha.year. With mineral fertilisation at rates of 29–62 kg N/ha.year, balances were moderately negative (–169 to –227 kg C/ha.year), and a clear humus deficit of –457 kg C/ha.year showed in the unfertilised control. Compared with measured soil organic C (SOC) data, REPRO predicted SOC contents fairly well with the exception of the treatments with high compost rates, where SOC contents were overestimated by REPRO. GHG balances calculated with soil C sequestration on the basis of humus balances, and on the basis of soil analyses, indicated negative GHG emissions with medium and high compost rates. Mineral fertilisation yielded net GHG emissions of ~2000 kg CO2-eq/ha.year. The findings underline that compost fertilisation holds potential for C sequestration and for the reduction of GHG emissions, even though this potential is bound to level off with increasing soil C saturation.
Additional keywords: modelling, REPRO, soil organic carbon, greenhouse gas emission.
References
Alluvione F, Bertora C, Zavattaro L, Grignani C (2010) Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Science Society of America Journal 74, 384–395.| Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWrtLs%3D&md5=9c655c39f579486b0868a52a196f9a28CAS |
Bellarby J, Foereid B, Hastings A, Smith P (2007) ‘Cool farming: Climate impacts of agriculture and mitigation potential.’ (Greenpeace: Amsterdam)
Blake GR, Hartge KH (1986) Bulk density. In ‘Methods of soil analysis. Part 1. Physical and mineralogical methods’. 2nd edn. pp. 363–375. (American Society of Agronomy: Madison, WI, USA)
Brock C, Hoyer U, Leithold G, Hülsbergen K-J (2012) The humus balance model (HU-MOD): a simple tool for the assessment of management change impact on soil organic matter levels in arable soils. Nutrient Cycling in Agroecosystems 92, 239–254.
| The humus balance model (HU-MOD): a simple tool for the assessment of management change impact on soil organic matter levels in arable soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVWnt7Y%3D&md5=b527056cde8796ee19fcde53761f002fCAS |
Brock C, Franko U, Oberholzer H-R, Kuka K, Leithold G, Kolbe H, Reinhold J (2013) Humus balancing in Central Europe—concepts, state of the art, and further challenges. Journal of Plant Nutrition and Soil Science 176, 3–11.
| Humus balancing in Central Europe—concepts, state of the art, and further challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVSqu7Y%3D&md5=ef6503b8e40e0825dad62b70f4a3c045CAS |
Cai Y, Ding W, Luo J (2013) Nitrous oxide emissions from Chinese maize–wheat rotation systems: A 3-year field measurement. Atmospheric Environment 65, 112–122.
| Nitrous oxide emissions from Chinese maize–wheat rotation systems: A 3-year field measurement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGktrzN&md5=d35bcf714dac01ab1412c8f6dd0c5312CAS |
Christen O, Hövelmann L, Hülsbergen K-J, Packeiser M, Rimpau J, Wagner B (Eds) (2009) ‘Nachhaltige landwirtschaftliche Produktion in der Wertschöpfungskette Lebensmittel.’ Initiativen zum Umweltschutz 78. (Erich Schmidt Verlag: Berlin)
Cortellini L, Toderi G, Baldoni G, Nassisi A (1996) Effects on the content of organic matter, nitrogen, phosphorus and heavy metals in soil and plants after application of compost and sewage sludge. In ‘The science of composting’. (Eds M De Bertoldi, P Sequi, B Lemmes, T Papi) pp. 457–467. (Blackie Academic and Professional: London)
Diez T, Krauss M (1997) Wirkung langjähriger Kompostdüngung auf Pflanzenertrag und Bodenfruchtbarkeit. Agribiological Research 50, 78–84.
Erhart E, Hartl W, Putz B (2005) Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. European Journal of Agronomy 23, 305–314.
| Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops.Crossref | GoogleScholarGoogle Scholar |
Erhart E, Feichtinger F, Hartl W (2007) Nitrogen leaching losses under crops fertilized with biowaste compost compared with mineral fertilization. Journal of Plant Nutrition and Soil Science 170, 608–614.
| Nitrogen leaching losses under crops fertilized with biowaste compost compared with mineral fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1antLzJ&md5=b200e5d8991ecba9449c9a60ae79b4f8CAS |
Franko U, Oelschlägel B (1995) Einfluss von Klima und Textur auf die biologische Aktivität beim Umsatz der organischen Bodensubstanz. Archiv Acker - Pflanzenbau Bodenkunde 39, 155–163.
Haas G, Geier U, Schulz D, Köpke U (1995) Vergleich konventioneller und organischer landbau – Teil I: Klimarelevante Kohlendioxid-Emission durch den Verbrauch fossiler Energie. Berichte über Landwirtschaft 73, 401–415.
Hartl W, Erhart E (2005) Crop nitrogen recovery and soil nitrogen dynamics in a 10-year field experiment with biowaste compost. Journal of Plant Nutrition and Soil Science 168, 781–788.
| Crop nitrogen recovery and soil nitrogen dynamics in a 10-year field experiment with biowaste compost.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOgsQ%3D%3D&md5=43ddcab5465d101fbee67d13e901e494CAS |
Hülsbergen K-J (2003) ‘Entwicklung und Anwendung eines Bilanzierungsmodells zur Bewertung der Nachhaltigkeit landwirtschaftlicher Systeme.’ (Shaker Verlag: Aachen, Germany)
Hülsbergen K-J, Schmid H (2010) Treibhausgasemissionen ökologischer und konventioneller Betriebssysteme. In ‘Emissionen landwirtschaftlich genutzter Böden’. KTBL-Schrift 483. (Eds Kuratorium für Technik und Bauwesen in der Landwirtschaft - KTBL) pp. 229–244. (KTBL-Verlag: Darmstadt, Germany)
Hülsbergen K-J, Feil B, Biermann S, Rathke G-W, Kalk W-D, Diepenbrock W (2001) A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems & Environment 86, 303–321.
| A method of energy balancing in crop production and its application in a long-term fertilizer trial.Crossref | GoogleScholarGoogle Scholar |
Hülsbergen K-J, Feil B, Diepenbrock W (2002) Rates of nitrogen application required to achieve maximum energy efficiency for various crops: results of a long-term experiment. Field Crops Research 77, 61–76.
| Rates of nitrogen application required to achieve maximum energy efficiency for various crops: results of a long-term experiment.Crossref | GoogleScholarGoogle Scholar |
IPCC (1996) ‘Revised IPCC Guidelines for National Greenhouse Gas Inventories: Workbook, Vol. 2.’ (IPCC/OECD/IEA/UK Meteorological Office: Bracknell, UK)
IPCC (2001) Climate Change 2001: The Scientific Basis. In ‘Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change’. (Cambridge University Press: Cambridge, UK)
Johnson MG, Levine ER, Kern JS (1995) Soil organic matter: Distribution, genesis, and management to reduce greenhouse gas emissions. Water, Air, and Soil Pollution 82, 593–615.
| Soil organic matter: Distribution, genesis, and management to reduce greenhouse gas emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1OltLo%3D&md5=442d68408b88f10b8a77a516de436930CAS |
Kasper M, Freyer B, Hülsbergen K-J, Schmid H, Friedel JK (2015) Humus balances of different farm production systems in main production areas in Austria. Journal of Plant Nutrition and Soil Science 178, 25–34.
| Humus balances of different farm production systems in main production areas in Austria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlaqs7s%3D&md5=6ddfcd23515f1461fa07d47bb7505b9bCAS |
Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality 36, 1821–1832.
| The myth of nitrogen fertilization for soil carbon sequestration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKqtLnP&md5=8c1be17f94ce17048143c45dd07a7ce8CAS | 17965385PubMed |
Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances—tools for evaluating sustainable productivity of soils. Zeitschrift für Pflanzenernährung Bodenkunde 161, 409–424.
| Turnover of soil organic matter (SOM) and long-term balances—tools for evaluating sustainable productivity of soils.Crossref | GoogleScholarGoogle Scholar |
Küstermann B, Kainz M, Hülsbergen K-J (2008) Modeling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems. Renewable Agriculture and Food Systems 23, 38–52.
| Modeling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems.Crossref | GoogleScholarGoogle Scholar |
Küstermann B, Christen O, Hülsbergen K-J (2010) Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agriculture, Ecosystems & Environment 135, 70–80.
| Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management.Crossref | GoogleScholarGoogle Scholar |
Küstermann B, Munch CJ, Hülsbergen K-J (2013) Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in Southern Germany. European Journal of Agronomy 49, 61–73.
| Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in Southern Germany.Crossref | GoogleScholarGoogle Scholar |
Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627.
| Soil carbon sequestration impacts on global climate change and food security.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Cgsrk%3D&md5=d7f39acdbb742c02109c7d81811f22cfCAS | 15192216PubMed |
Leithold G, Hülsbergen K-J, Brock C (2015) Organic matter returns to soils must be higher under organic compared to conventional farming. Journal of Plant Nutrition and Soil Science 178, 4–12.
| Organic matter returns to soils must be higher under organic compared to conventional farming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKrur%2FE&md5=0b5bdd4650d5809c02d5265d49ebb664CAS |
Nelson RE (1982) Carbonate and gypsum. In ‘Methods of soil analysis. Part 2’. pp. 181–197. (American Society of Agronomy, Soil Science Society of America: Madison, WI, USA)
Nelson D, Sommers L (1982) Total carbon, organic carbon, and organic matter. In ‘Methods of soil analysis. Part 2’. pp. 539–579. (American Society of Agronomy, Soil Science Society of America: Madison, WI, USA)
Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241, 155–176.
| Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltV2jsbo%3D&md5=0a3cfa5658de1509067a636dfda3c288CAS |
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O‘Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In ‘Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds B Metz, OR Davidson, PR Bosch, R Dave, LA Meyer) (Cambridge University Press: Cambridge, UK and New York, USA)
Stöppler-Zimmer H, Petersen U (1997) Bewertungskriterien für Qualität und Rottestadium von Bioabfallkompost unter Berücksichtigung der verschiedenen Anwendungsbereiche. Orientierende Feldversuche mit Bioabfallkomposten unterschiedlichen Rottegrades. In ‘Neue Techniken zur Kompostierung, Verwertung auf landwirtschaftlichen Flächen’. Band I. (Eds Umweltbundesamt) (Verlag UBA: Berlin)
Timmermann F, Kluge R, Bolduan R, Mokry M, Janning S (2003) Nachhaltige Kompostverwertung—pflanzenbauliche Vorteilswirkungen und mögliche Risiken. In ‘Nachhaltige Kompostverwertung in der Landwirtschaft. Abschlußbericht’. (Eds Gütegemeinschaft Kompost Region Süd e.V.) (LUFA Augustenberg: Karlsruhe, Germany)
Zegada-Lizarazu W, Matteuci D, Monti A (2010) Critical review on energy balance of agricultural systems. Biofuels, Bioproducts & Biorefining 4, 423–446.
| Critical review on energy balance of agricultural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFSjsrk%3D&md5=b61ba0efdf043e5319f7ee0c66edc820CAS |