Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Organic matter kept Al toxicity low in a subtropical no-tillage soil under long-term (21-year) legume-based crop systems and N fertilisation

F. C. B. Vieira A , C. Bayer B E , J. Zanatta C and P. R. Ernani D
+ Author Affiliations
- Author Affiliations

A Federal University of Pampa, Av. Antonio Trilha 1845, 97300-000, São Gabriel, RS, Brazil.

B Department of Soil Science, Federal University of Rio Grande do Sul, PO Box 15100, 91.501-970, Porto Alegre, RS, Brazil.

C Brazilian Agricultural Research Corporation-EMBRAPA/CPAO, BR 163, km 253.6, PO Box 661, 79804-970, Dourados, MS, Brazil.

D Santa Catarina State University, Av. Luiz de Camões 2090, 88520-000, Lages, SC, Brazil.

E Corresponding author. Email: cimelio.bayer@ufrgs.br

Australian Journal of Soil Research 47(7) 707-714 https://doi.org/10.1071/SR08273
Submitted: 22 December 2008  Accepted: 24 June 2009   Published: 6 November 2009

Abstract

Nitrogen-fixing crops and N fertilisation increase soil acidification, but few studies have attempted to evaluate the capacity of soil organic matter to alleviate the Al toxicity in acid no-tilled soils. This study was carried out in a 21-year-old experiment aiming to evaluate the effect of crop systems [fallow/maize (Zea mays L.), F/M; oat (Avena strigosa Schreb)/maize, O/M; oat + vetch (Vigna sativa L.)/maize, O+V/M; lablab (Dolichos lablab) + maize, L+M; and pigeon pea (Cajanus cajan L. Millsp.) + maize, P+M] and mineral N fertilisation (0 and 149 kg/ha.year) on chemical attributes and Al speciation in the 0–0.05 and 0.05–0.10 m layers of a no-tilled Paleudult of Southern Brazil. The original soil pH (5.8) decreased in all crop systems, declining 0.37–1.52 units in 21 years without re-liming. This decrease was larger in subsoil layers and, in general, was exacerbated by legume-based crop systems and by N fertilisation. The drop in soil pH increased Al content in solid phase (range 0.07–1.85 cmolc/kg) and in soil solution (range 0.01–0.06 mmol/L), and decreased base saturation on cation exchange capacity (range 12.5–61.2%). However, the Al3+ activity in the soil solution (1.03×10−7–9.3×10−8) was kept below threshold values of toxicity to maize roots, primarily due to the formation of organometallic complexes at low pH, which was estimated as up to 90% of the total Al in solution, but also due to the increased ionic strength in this no-till soil (0.0026–0.0104). Our results highlight that, although legume cover crops and N fertilisation can accelerate soil acidification, Al toxicity is offset by increased organic matter in no-till subtropical soils.

Additional keywords: aluminium speciation, soil solution, toxicity, cropping systems, no-till, organometallic complexes.


References


Adams F, Lund ZF (1966) Effect of chemical activity of soil solution aluminum on cotton root penetration of acid subsoils. Soil Science 101, 193–198.
Crossref | GoogleScholarGoogle Scholar | open url image1

Aitken RL, Moody PW (1991) Interrelations between soil pH measurements in various electrolytes and soil solution pH in acidic soils. Australian Journal of Soil Research 29, 483–491.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bergamaschi H , Guadagnin MR (1990) ‘Agroclima da Estação Experimental Agronômica.’ (Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil) (in Portuguese)

Bouman OT, Curtin D, Campbell CA, Biederbeck VO, Ukrainetz H (1995) Soil acidification from long-term use of anhydrous ammonia and urea. Soil Science Society of America Journal 59, 1488–1494. open url image1

Brenes E, Pearson RW (1973) Root responses of three Gramineae species to soil acidity in an Oxisol and an Ultisol. Soil Science 116, 295–302.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brown TT, Koenig RT, Harsh JB, Rossi RE (2008) Lime effects on soil acidity, crop yield, and aluminum chemistry in direct-seeded cropping systems. Soil Science Society of America Journal 72, 634–640.
Crossref | GoogleScholarGoogle Scholar | open url image1

Burle ML, Mielniczuk J, Focchi S (1997) Effect of cropping systems on soil chemical characteristics, with emphasis on soil acidification. Plant and Soil 190, 309–316.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caires EF, Churka S, Garbuio FJ, Ferrari RA, Morgano MA (2006) Soybean yield and quality as a function of lime and gypsum applications. Scientia Agricola 63, 370–379.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caires EF, Garbuio FJ, Churka S, Barth G, Correa JCL (2008) Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. European Journal of Agronomy 28, 57–64.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cameron RS, Ritchie GSP, Robson AD (1986) Relative toxicities of inorganic aluminum complexes to barley. Soil Science Society of America Journal 50, 1231–1236. open url image1

Ciotta MN, Bayer C, Fontoura SMV, Ernani PR, Albuquerque JA, Wobeto C (2002) Acidificação de um Latossolo sob plantio direto. Revista Brasileira de Ciencia Do Solo [in Portuguese] 26, 1055–1064. open url image1

CQFS RS/SC (Comissão de Química e Fertilidade do Solo dos Estados do Rio Grande do Sul e Santa Catarina) (2004) ‘Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina.’ (CQFS: Porto Alegre, Brazil) (in Portuguese)

Franzluebbers AJ, Hons FM (1996) Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil & Tillage Research 39, 229–239.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gerke J (1994) Aluminum complexation by humic substances and aluminum species in the soil solution. Geoderma 63, 165–175.
Crossref | GoogleScholarGoogle Scholar | open url image1

Giongo V (2002) Características químicas da solução de solo no sistema plantio direto e relação entre alumínio e silício em genótipos de milho. Doutorado em Ciência do Solo, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul. (in Portuguese)

Gustafsson JP (2008) ‘Visual MINTEQ (for Windows).’ (KTH: Stockholm)

Hargrove WL , Thomas GW (1981) Effect of organic matter on exchangeable aluminum and plant growth in acid soils. In ‘Chemistry of soil environment’. (Ed. DE Baker) pp. 151–166. (ASA-SSSA: Madison, WI)

Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems 59, 47–63.
Crossref | GoogleScholarGoogle Scholar | open url image1

Helyar KR , Porter WM (1989) Soil acidification, its measurement and the processes involved. In ‘Soil acidity and plant growth’. (Ed. AD Robson) pp. 61–101. (Academic Press: Sydney)

Hiradate S (2004) Speciation of aluminum in soil environments. Soil Science and Plant Nutrition 50, 303–314. open url image1

Hue NV (1992) Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage-sludge. Communications in Soil Science and Plant Analysis 23, 241–264.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165, 277–304.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kaminski J , Rheinheimer DS , Bartz HR , Gatiboni LC , Bissani CA , Escosteguy PAV (2001) Proposta de nova equação para determinação do valor de H+Al pelo uso do índice SMP em Solos do RS e SC. In ‘Reunião Anual da Rede Oficial de Laboratórios de Análise de Solo e de Tecido Vegetal nos Estados do Rio Grande do Sul e de Santa Catarina, 33’. pp. 21–26. (LASTV: Frederico Westphalen, Brazil) (in Portuguese)

Kinraide TB (1990) Assessing the rhizotoxicity of the aluminate ion, Al(OH)4 –. Plant Physiology 93, 1620–1625.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kinraide TB (1991) Identity of the rhizotoxic aluminum species. Plant and Soil 134, 167–178. open url image1

Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development 17, 197–209.
Crossref | GoogleScholarGoogle Scholar | open url image1

Liao H, Wan HY, Shaff J, Wang XR, Yan XL, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance, exudation of specific organic acids from different regions of the intact root system. Plant Physiology 141, 674–684.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ma G, Rengasamy P, Rathjen AJ (2003) Phytotoxicity of aluminium to wheat plants in high-pH solutions. Australian Journal of Experimental Agriculture 43, 497–501.
Crossref | GoogleScholarGoogle Scholar | open url image1

McBride MB (1994) ‘Environmental chemistry of soils.’ (Oxford University Press: New York)

Pavan MA, Bingham FT, Pratt PF (1982) Toxicity of aluminum to coffee in Ultisols and Oxisols amended with CaCO3, MgCO3, and CaSO4.2H2O. Soil Science Society of America Journal 46, 1201–1207. open url image1

Pöttker D , Ben JR (1998) Calagem em solos sob plantio direto e em campos nativos do Rio Grande do Sul. In ‘Conceitos e fundamentos do sistema plantio direto’. (Ed. NJ Nuernberg) pp. 77–92. (SBCS-Núcleo Regional Sul: Lages, Brazil) (in Portuguese)

Rheinheimer DS, Anghinoni I (2003) Accumulation of soil organic phosphorus by soil tillage and cropping systems under subtropical conditions. Communications in Soil Science and Plant Analysis 34, 2339–2354.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sá JCM (1996) Calagem em solos sob plantio direto na região dos Campos Gerais, Centro-Sul do Paraná. In ‘Curso sobre manejo do solo no sistema plantio direto’. (Ed. Sá JCM) pp. 73–107. (Fundação ABC: Ponta Grossa, Brazil) (in Portuguese)

Salet RL (1998) Toxidez de alumínio no sistema plantio direto. Doutorado em Ciência do Solo, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul. (in Portuguese)

Stass A, Wang Y, Eticha D, Horst WJ (2006) Aluminium rhizotoxicity in maize grown in solutions with Al3+ or Al(OH)4 – as predominant solution Al species. Journal of Experimental Botany 57, 4033–4042.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tedesco MJ , Gianello C , Bissani CA , Bohnen H , Volkweiss SJ (1995) ‘Análises de solo, plantas e outros materiais.’ (UFRGS: Porto Alegre, Brazil) (in Portuguese)

van Hees PAW, Lundstrom US, Giesler R (2000) Low molecular weight organic acids and their Al-complexes in soil solution—composition, distribution and seasonal variation in three podzolized soils. Geoderma 94, 173–200.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vieira FCB, Bayer C, Mielniczuk J, Zanatta JA, Bissani CA (2008a) Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertilizer. Australian Journal of Soil Research 46, 17–26.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vieira FCB, Bayer C, Zanatta JA, Dieckow J, Mielniczuk J, He ZL (2007) Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil & Tillage Research 96, 195–204.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vieira FCB, He ZL, Wilson PC, Bayer C, Stoffella PJ, Baligar VC (2008b) Response of representative cover crops to aluminum toxicity, phosphorus deprivation, and organic amendment. Australian Journal of Agricultural Research 59, 52–61.
Crossref | GoogleScholarGoogle Scholar | open url image1

West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal 66, 1930–1946. open url image1

Wolt JD (1994) ‘Soil solution chemistry: applications to environmental science and agriculture.’ (John Wiley & Sons Inc.: New York)