Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama

J. B. Yavitt A E , K. E. Harms B , M. N. Garcia C , S. J. Wright C , F. He D and M. J. Mirabello A
+ Author Affiliations
- Author Affiliations

A Department of Natural Resources, Cornell University, Ithaca, NY 14853-3001, USA.

B Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

C Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.

D Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.

E Corresponding author. Email: jby1@cornell.edu

Australian Journal of Soil Research 47(7) 674-687 https://doi.org/10.1071/SR08258
Submitted: 30 November 2008  Accepted: 25 June 2009   Published: 6 November 2009

Abstract

We evaluated spatial heterogeneity for pH and a comprehensive set of nutrient and trace elements in surface (0–0.1 m depth) and subsurface (0.3–0.4 m depth) soils across 26.6 ha of old-growth, lowland, tropical moist forest, established on a highly weathered soil in Panama. Little is known about spatial heterogeneity patterns of soil properties in tropical forest soils. Soil was moderately acidic (pH 5.28) with low concentrations of exchangeable base cations (13.4 cmolc/kg), Bray-extractable PO4 (2.2 mg/kg), KCl-extractable NO3 (5.0 mg/kg), and KCl-extractable NH4 (15.5 mg/kg). The coefficient of variation for soil properties ranged from 24% to >200%, with a median value of 84%. Geostatistical analysis revealed spatial dependence at a scale of 10–100 m for most of the soil properties; however, pH, NH4, Al, and B had spatial dependence at a scale up to 350 m. Best-fit models to individual variograms included random, exponential, spherical, Gaussian, linear, and power functions, indicating many different spatial patterns among the set of soil properties. Correlation among individual elements was poor, indicating independent patterns. Our results show complex spatial patterns in soil chemical properties and provide a basis for future investigations on soil–plant relationships and soil nutrient niche differentiation.

Additional keywords: base cations, geostatistical analysis, nutrients, spatial variability, trace elements, variogram.


Acknowledgments

Research support provided by grants from the Andrew W. Mellon Foundation and the Smithsonian Scholarly Studies program. The Smithsonian Tropical Research Institute provides much support for the ongoing Gigante Fertilization Project. We thank the many students in Panama and at Cornell for assistance in the field and in the laboratory.


References


Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics 39, 153–170.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baillie IC , Ashton PS (1983) Some soil aspects of the nutrient cycle in mixed Dipterocarp forests in Sarawak. In ‘Tropical rain forest: ecology and management’. (Eds SL Sutton, TC Whitmore, AC Chadwick) pp. 347–356. (Blackwell Press: Oxford, UK)

Barthold FK, Stallard RF, Elsenbeer H (2008) Soil nutrient–landscape relationships in a lowland tropical rainforest in Panama. Forest Ecology and Management 255, 1135–1148.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bengtson P, Basiliko N, Prescott CE, Grayston SJ (2007) Spatial dependency of soil nutrient availability and microbial properties in a mixed forest of Tsuga heterophylla and Pseudotsuga menziesii, in coastal British Columbia, Canada. Soil Biology & Biochemistry 39, 2429–2435.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Berndtsson R, Bahri A, Jinno K (1993) Spatial dependence of geochemical elements in a semiarid agricultural field: II Geostatistical properties. Soil Science Society of America Journal 57, 1323–1329.
CAS |
open url image1

Blair BC (2005) Fire effects on the spatial patterns of soil resources in a Nicaraguan wet tropical forest. Journal of Tropical Ecology 21, 435–444.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59, 39–46.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Burt TP, Park SJ (1999) The distribution of solute processes on an acid hillslope and delivery of solutes to a stream. I. Exchangeable bases. Earth Surface Processes and Landforms 24, 781–797.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chien YJ, Lee DY, Guo HY, Houng KH (1997) Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Science 162, 291–298.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology & Evolution 10, 18–22.
Crossref | GoogleScholarGoogle Scholar | open url image1

Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núñez PV, Aguilar S, Valencia R, Villa G, Muller-Landau H, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science 295, 666–669.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cressie NAC (1991) ‘Statistics for spatial data.’ (John Wiley & Sons: New York)

Cronan CS, Grigal DF (1995) The use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality 24, 209–226.
CAS |
open url image1

Delcourt H, Darius PL, De Baerdemaeker J (1996) The spatial variability of some aspects of topsoil fertility in two Belgian fields. Computers and Electronics in Agriculture 14, 179–196.
Crossref | GoogleScholarGoogle Scholar | open url image1

Denslow JS, Vitousek PM, Schultz JC (1987) Bioassays of nutrient limitation in a tropical rain forest soil. Oecologia 74, 370–376.
Crossref | GoogleScholarGoogle Scholar | open url image1

Derry LA, Kurtz A, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433, 728–731.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Diekmann LO, Lawrence D, Okin GS (2007) Changes in the spatial variation of soil properties following shifting cultivation in a Mexican tropical dry forest. Biogeochemistry 84, 99–113.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dobermann A, Goovaerts P, George T (1995) Sources of soil variation in an acid Ultisol of the Philippines. Geoderma 68, 173–191.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Donnelly TW , Beets DJ , Carr MJ , Jackson TA , Klaver G , Lewis JF , Lidiak E , Maury RC , Schellekens JH , Smith AL , Wadge G , Westercamp D (1990) History and geology of Caribbean Igneous rock series. In ‘Geology of the Caribbean, Decade of North American Geology. Vol. H’. (Eds G Dengo, J Case) pp. 339–374. (Geological Society of America: Boulder, CO)

Ekenler M, Tabatabai MA (2002) Effects of trace metals on beta-glucosaminidase activity in soils. Soil Biology & Biochemistry 34, 1829–1832.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Eskew DL, Welch RM, Cary EE (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222, 621–623.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fox RL (1982) Some highly weathered soils of Puerto Rico, 3. Chemical properties. Geoderma 27, 139–176.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gallardo A (2003) Spatial variability of soil properties in a floodplain forest in Northwest Spain. Ecosystems 6, 564–576.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gallardo A, Parama R (2007) Spatial variability of soil elements in two plant communities of NW Spain. Geoderma 139, 199–208.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gallardo A, Paramá R, Covelo F (2005) Soil Ammonium vs. nitrate spatial pattern in six plant communities: simulated effect on plant populations. Plant and Soil 277, 207–219.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Goldberg S, Forster HS (1998) Factors affecting molybdenum adsorption by soils and minerals. Soil Science 163, 109–114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gonzalez OJ, Zak DR (1994) Geostatistical analysis of soil properties in a secondary tropical dry forest, St Lucia, West Indies. Plant and Soil 163, 45–54. open url image1

Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89, 947–959.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heuvelink GBM, Webster R (2001) Modelling soil variation: past, present, and future. Geoderma 100, 269–301.
Crossref | GoogleScholarGoogle Scholar | open url image1

Holmes KW, Kyriakidis PC, Chadwick OA, Soares JV, Roberts DA (2005) Multi-scale variability in tropical soil nutrients following land-cover change. Biogeochemistry 74, 173–203.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53, 51–77.
Crossref | GoogleScholarGoogle Scholar | open url image1

John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America 104, 864–869.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Johnsson MJ, Stallard RF (1989) Physiographic controls on the composition of sediments derived from volcanic and sedimentary terrains on Barro Colorado Island, Panama. Journal of Sedimentary Research 59, 768–781. open url image1

Kabata-Pendias A (2001) ‘Trace elements in soils and plants.’ (CRC Press Inc.: Boca Raton, Fl)

Kogelmann WJ, Sharpe WE (2006) Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania. Journal of Environmental Quality 35, 433–441.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Leigh EG Jr (1999) ‘Tropical forest ecology: a view from Barro Colorado Island.’ (Oxford University Press: New York)

Losos EC , Leigh EG Jr (2004) ‘Tropical forest diversity and dynamism: findings from a large-scale plot network.’ (The University of Chicago Press: Chicago, IL)

Luwe MWF (1995) Distribution of nutrients and phytotoxic metal ions in the soil and in two forest floor plant species of a beech (Fagus sylvatica L.) stand. Plant and Soil 168–169, 195–202.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manderscheid B, Matzner E (1995) Spatial heterogeneity of soil solution chemistry in a mature Norway spruce (Picea abies (L.) Karst.) stand. Water, Air, and Soil Pollution 85, 1185–1190.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

McBratney AB, Webster R (1986) Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Journal of Soil Science 37, 617–639.
Crossref | GoogleScholarGoogle Scholar | open url image1

Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution 145, 121–130.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mulla DJ , McBratney AB (2000) Soil spatial variability. In ‘Handbook of soil science’. (Ed. ME Sumner) pp. A-321–A-352. (CRC Press: Boca Raton, FL)

Mylavarapu RS, Sanchez JF, Nguyen JH, Bartos JM (2002) Evaluation of Mehlich-1 and Mehlich-3 extraction procedures for plant nutrients in acid mineral soils of Florida. Communications in Soil Science and Plant Analysis 33, 807–820.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ohno T, Fernandez IJ, Hiradate S, Sherman JF (2007) Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma 140, 176–187.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Paz A, Taboada MT, Gomez MJ (1996) Spatial variability in topsoil micronutrient contents in a one-hectare cropland plot. Communications in Soil Science and Plant Analysis 27, 479–503.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ponette Q, Andre D, Dufey JE (1996) Chemical significance of aluminum extracted from three horizons of an acid forest soil, using chloride salt solutions. Journal of Soil Science 47, 89–95.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Richter DD, Babbar LI (1991) Soil diversity in the tropics. Advances in Ecological Research 21, 315–389.
Crossref | GoogleScholarGoogle Scholar | open url image1

Robertson GP, Crum JR, Ellis BG (1993) The spatial variability of soil resources following long-term disturbance. Oecologia 96, 451–456.
Crossref | GoogleScholarGoogle Scholar | open url image1

Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications 7, 158–170.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ronov AB , Yaroshevsky AA (1972) Earth’s crust and geochemistry. In ‘The encyclopedia of geochemistry and environmental sciences, Vol. IVA’. (Ed. RW Fairbridge) pp. 243–254. (Van Nostrand Reinhold: New York)

Sauer TJ, Cambardella CA, Meek DW (2006) Commentary – Spatial variation of soil properties relating to vegetation changes. Plant and Soil 280, 1–5.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Schlesinger WH, Raikes J, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77, 364–374.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shuman LM (2005) Micronutrients. In ‘Encyclopedia of soils in the environment’. (Ed. D Hillel) pp. 479–486. (Elsevier: Boston, MA)

Silver WL, Scatena FN, Johnson AH, Siccama TG, Sanchez MJ (1994) Nutrient availability in a montane wet tropical forest: spatial patterns and methodological considerations. Plant and Soil 164, 129–145.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Stutter MI, Deeks LK, Billett MF (2004) Spatial variability in soil ion exchange chemistry in a granitic upland catchment. Soil Science Society of America Journal 68, 1304–1314.
CAS |
open url image1

Takeda A, Tsukada H, Takaku Y, Hisamatsu S, Inaba J, Nanzyo M (2006) Extractability of major and trace elements from agricultural soils using chemical extraction methods: application for phytoavailability assessment. Soil Science and Plant Nutrition 52, 406–417.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends in Ecology & Evolution 23, 424–431.
Crossref | GoogleScholarGoogle Scholar | open url image1

Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007) Controls over foliar N : P ratios in tropical rain forests. Ecology 88, 107–118.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Trangmer BB, Yost RS, Uehara G (1985) Application of geostatistics to spatial studies of soil properties. Advances in Agronomy 38, 45–94.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tyler G, Olsson T (2001) Concentrations of 60 elements in the soil solution as related to the soil acidity. European Journal of Soil Science 52, 151–165.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Uehara G , Gillman GP (1981) ‘The mineralogy, chemistry and physics of tropical soils with variable charge clays.’ (Westview Press: Boulder, CO)

Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. American Naturalist 119, 553–572.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vitousek PM, Matson PA (1988) Nitrogen transformation in tropical forest soils. Soil Biology & Biochemistry 20, 361–367.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Wang L, Mou PP, Huang J, Wang J (2007) Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant and Soil 295, 137–150.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Wilding LP (1985) Spatial variability: its documentation, accommodation and implication to soil surveys. In ‘Soil spatial variability’. (Eds DR Nielsen, J Bouma) pp. 166–189. (PURDOC: Wageningen, The Netherlands)

Wopereis MC, Gascuel-Odoux C, Bourrie G, Soignet G (1988) Spatial variability of heavy metals in soil on a one-hectare scale. Soil Science 146, 113–118.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yavitt JB (2000) Nutrient dynamics of soil derived from different parent materials on Barro Colorado Island, Panama. Biotropica 32, 198–207. open url image1

Yavitt JB, Wright SJ (1996) Temporal patterns of soil nutrients in a Panamanian moist forest revealed by ion-exchange resins and experimental irrigation. Plant and Soil 183, 117–129.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1