Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Mathematical modelling of temperature profile of volcanic soils affected by an external thermal impact

Mónica Antilén A , Olivier Fudym B , Alvaro Vidal B , Juan E. Foerster C , Nelson Moraga B and Mauricio Escudey C
+ Author Affiliations
- Author Affiliations

A Corresponding author: Facultad de Química, Pontificia Universidad Católica de Chile, Vicuna Mackenna 4860, PO Box 306-22, Santiago, Chile. Email: mantilen@uc.cl

B Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Lib. B.O’Higgins 3363, Santiago, Chile.

C Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. B.O’Higgins 3363, Santiago, Chile.

Australian Journal of Soil Research 44(1) 57-61 https://doi.org/10.1071/SR05038
Submitted: 16 March 2005  Accepted: 2 November 2005   Published: 10 February 2006

Abstract

In this work, the soil temperature at depth was measured in the laboratory, and a mathematical model to fit the temperature profile in volcanic soils classified as Ultisols and Andisols was used. The mathematical model considered the transient heat diffusion equation, and a numerical discrete method was used to solve the equations system.

The soil surface was heated for 2500 s and the temperature rose close to 700°C; the soil temperature decreased with depth; the temperature v. time curves showed a constant value when the temperature reached around 100°C, associated with water phase change and related to the water content of soils. The model was corrected by including the heat volumetric formulation. The observed relative errors are close to 10% in all fitted curves with respect to experimental data, showing the quality of the parametrisation chosen in the mathematical model. The fitting curve deviations were reduced when the actual position of thermocouples was considered, showing the sensitivity of the mathematical model.

The simplified mathematical transient diffusion model proposed, which considers 2 ranges of thermal conductivity of soils and the surface temperature, was able to describe the experimental temperature profile in volcanic soils with wide differences in mineralogy, organic matter, and moisture contents.

Additional keywords: temperature-time curves, forest fires, thermal properties, Chilean volcanic soils.


Acknowledgments

This study was supported by DICYT-USACH and FONDECYT 1030778.


References


Abu-Hamdeh NH, Reeder RC (2000) Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal 64, 1285–1290. open url image1

Antilén M (2002) Efecto del impacto térmico en suelos: Estudio de la relación temperatura-propiedades del suelo y modelación del gradiente de temperatura en profundidad. Tesis Doctor en Química, Universidad de Santiago de Chile, Santiago, Chile.

Antilén M, Escudey M, Foerster JE, Moraga N, Marty D, Fudym O (2003) Application of the hot disk method to the thermophysical characterization of soils. Journal of the Chilean Chemical Society 48, 27–29. open url image1

Antilén M, García D, Reynaldo I, Foerster JE, Escudey M (2001) Efecto del impacto térmico sobre el carbono biomásico de suelos chilenos. ‘Proceedings of the XV Congreso Latinoamericano de la Ciencia del Suelo’. Varadero. (Ed. Sociedad Cubana de la Ciencia del Suelo ) p. 76. (SCSS Publisher: La Habana, Cuba)


Celentano D, Cruchaga M, Moraga N, Fuentes J (2001) Modeling natural convection with solidification in mould cavities. Numerical Heat Transfer Part A 39, 631–654.
Crossref | GoogleScholarGoogle Scholar | open url image1

Elias EA, Cichota R, Torriani HH, de Jong van Lier (2004) Analytical soil-temperature model: correction for temporal variation of daily amplitude. Soil Science Society of America Journal 68, 784–788. open url image1

Escudey M, Galindo G, Forster JE, Briceño M, Diaz P, Chang A (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Communications in Soil Science and Plant Analysis 32, 601–616.
Crossref | GoogleScholarGoogle Scholar | open url image1

Escudey M, Moya SA (1989) Use of volcanic-ash-derived soils as iron oxide supported catalysts. Colloids and Surfaces 37, 141–148.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hsiao JS (1985) An efficient algorithm for finite difference analysis of heat transfer with melting and solidification. Numerical Heat Transfer Part A 8, 653–666. open url image1

Kozlovskiy VM, Ivanova KF, Zaytzev VV (1996) Moisture effect of soil thermal conductivity. Eurasian Soil Science 28, 146–156. open url image1

Mendes-Lopes JMC, Ventura JMP, Amaral JMP (2003) Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of Pinus pinaster needles. International Journal of Wildland Fire 12, 67–84.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mihalakakou G (2002) On estimating soil surface temperature profiles. Energy and Buildings 34, 251–259.
Crossref | GoogleScholarGoogle Scholar | open url image1

Molina MJ, Linares JV (2001) Temperature-time curves at the soil surface in maquis summer fires. International Journal of Wildland Fire 10, 45–52.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moraga NO, Medina EE (2000) Conjugate forced convection and heat conduction with freezing of water content in a plate shaped food. International Journal of Heat Mass Transfer 43, 53–67.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moraga NO, Salinas CH (1999) Numerical model for heat and fluid flow in food freezing. Numerical Heat Transfer Part A–Applications 35, 495–513.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ogee J, Brunet Y (2002) A forest floor model for heat and moisture including a litter layer. Journal of Hydrology 255, 212–233.
Crossref | GoogleScholarGoogle Scholar | open url image1

Patankar, SV (1980). ‘Numerical heat transfer and fluid flow.’ (Hemisphere Publishing: Washington, DC)

Pino I, Rouanet JL, Zapata F, Parada AM, Nario A (2002) Efficiency of recovery of N in the plant-soil system on a wheat crop under alternative soil tillage in an Ultisol in the IX Region. Agricultura Técnica 62, 275–283. open url image1

Schwertmann U, Taylor R (1977) Iron oxides. ‘Minerals in soil environments’. (Eds J Dixon, S Weed) pp. 145–180. (SSSA Publishing: Madison, WI)