Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Vertical distribution of edaphic oribatid mites (Acari: Oribatida) in two artificial forests planted on temperate grasslands

Eugenia Levy https://orcid.org/0000-0002-1544-7206 A B * , M. Fernanda Alvarez A B C and Natalia A. Fredes B
+ Author Affiliations
- Author Affiliations

A Instituto de Investigaciones Marinas y Costeras, CONICET-UNMdP, Mar Del Plata, Argentina.

B Universidad Nacional de Mar del Plata, Mar Del Plata, Argentina.

C Instituto de Geología de Costas y del Cuaternario, CIC-UNMdP, Mar Del Plata, Argentina.

* Correspondence to: elevy@mdp.edu.ar

Handling Editor: Frank Ashwood

Soil Research 62, SR23160 https://doi.org/10.1071/SR23160
Submitted: 16 August 2023  Accepted: 16 March 2024  Published: 12 April 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Oribatid mites are the most abundant taxon in forest soils that rely on porosity and organic matter availability. Exotic forests of Pinus radiata and Eucalyptus globulus planted over native grasslands in the Pampas region of Argentina have produced modification in soil properties, which can affect the composition and structure of native oribatids communities.

Aims

To compare oribatid communities in soils under artificial woodlands of pine and eucalyptus and to assess the vertical distribution of oribatids in relation to edaphic variables.

Methods

In each forest, oribatids were collected from three levels of the A horizon: (1) litter layer; (2) 0–5 cm; and (3) 5–10 cm. Edaphic variables measured were penetration resistance, bulk density, total porosity, pH and water content and luminosity at soil level. Density, species richness, diversity and evenness of oribatids were calculated in each level of each forest. Comparisons were made through multivariate analyses.

Key results

Edaphic variables showed no significant differences between plots but litters were structurally different. Richness and diversity showed no differences between plots whereas evenness was significantly higher in plot P. Density had higher values in the litter layer of both forests. Canonical Analysis of Principal Coordinates (CAP) showed that Pine plots had a more defined vertical distribution.

Conclusions

The structure and composition of litters promoted differences in the vertical distribution of oribatids. In Pinus, thick unaltered litter showed a marked vertical gradient of mites along levels while in Eucalyptus, thin and easily decomposing litter, showed no vertical patterns.

Implications

Assessment and management of soil biodiversity in artificial woodlands.

Keywords: Eucalyptus plantation, habitat complexity, litter layer, mesofauna, Oribatida, Pinus plantation, soil fauna, vertical distribution, woodland soils.

References

Alvarez MF, Levy E, Poch RM, Osterrieth M (2020) Edaphic variables conditioning the habitat of oribatid mites in Luvic Phaeozems under forest plantations (Buenos Aires, Argentina). Spanish Journal of Soil Science 10, 1-15.
| Crossref | Google Scholar |

Amato M, Ladd JN (1992) Decomposition of 14C-labelled glucose and legume material in soils: properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biology and Biochemistry 24(5), 455-464.
| Crossref | Google Scholar |

Amoo AE, Delgado-Baquerizo M, Babalola OO (2021) Forest plantations reduce soil functioning in terrestrial ecosystems from South Africa. Pedobiologia 89, 150757.
| Crossref | Google Scholar |

Anderson JM (1971) Observations on the vertical distribution of Oribatei (Acarina) in two woodland soils. In ‘Proceedings of the 4th Colloquium of the Zoological Committee of the International Society of Soil Sciences’. Dijon, pp. 257–272. (Institut National de la Recherche Agronomique)

Anderson JM (1975) Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. The Journal of Animal Ecology 44, 475-495.
| Crossref | Google Scholar |

Anderson JM (1978) Inter- and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32, 341-348.
| Crossref | Google Scholar | PubMed |

Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511-525.
| Crossref | Google Scholar |

Anderson MJ, Gorley RN, Clarke KR (2008) ‘PERMANOVA + for PRIMER : guide to software and statistical methods.’ p. 214. (PRIMER-E: Plymouth, UK)

Badejo MA, Akinwole PO (2006) Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest. Experimental and Applied Acarology 40, 145-156.
| Crossref | Google Scholar | PubMed |

Balogh J, Balogh P (1988) ‘Oribatid mites of the neotropical region I.’ (Elsevier Science Publishing: Amsterdam)

Balogh J, Balogh P (1990) ‘Oribatid mites of the neotropical region I.’ (Elsevier Science Publishing: Amsterdam)

Balogh J, Balogh P (1992) ‘The oribatid mite genera of the World.’ (Hungarian Natural History Museum: Budapest)

Barreto C, Lindo Z (2018) Drivers of decomposition and the detrital invertebrate community differ across a hummock-hollow microtopology in Boreal peatlands. Écoscience 25(1), 39-48.
| Crossref | Google Scholar |

Blake GR, Hartge KH (1986) Bulk density. In ‘Methods of soil analysis: part 1 physical and mineralogical methods, Vol. 5’. (Ed. A Klute) pp. 363–375. (American Society of Agronomy, Inc. Soil Science Society of America, Inc.)

Bradford JM (1986) Penetrability. In ‘Methods of soil analysis: part 1 physical and mineralogical methods, Vol. 5’. (Ed. A Klute) pp. 463–478. (American Society of Agronomy, Inc., Soil Science Society of America, Inc.: Madison, WI, USA)

Brown A, Martínez Ortiz U, Acerbi M, Coruera J (Eds) (2006) ‘La Situación Ambiental Argentina 2005.’ (Fundación Vida Silvestre Argentina: Buenos Aires, Argentina)

Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Applied Soil Ecology 9, 123-135.
| Crossref | Google Scholar |

Camus PA, Lima M (1995) El uso de la experimentación en ecología: supuestos, limitaciones, fuentes de error, y su status como herramienta explicativa. Revista Chilena de Historia Natural 68, 19-42.
| Google Scholar |

Cassel DK, Nielsen DR (1986) Field capacity and available water capacity. In ‘Methods of soil analysis: part 1 physical and mineralogical methods, Vol. 5’. (Ed. A Klute) pp. 901–926. (American Society of Agronomy, Inc., Soil Science Society of America, Inc.: Madison, WI, USA)

Cingolani CA (2011) The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. International Journal of Earth Sciences 100, 221-242.
| Crossref | Google Scholar |

Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry 40, 271-289.
| Crossref | Google Scholar |

Coleman DC, Crossley DA, Hendrix PF (2004) ‘Fundamentals of soil ecology.’ 2nd edn. (Institute of Ecology, University of Georgia, Elsevier Academic Press)

Danielson RE, Sutherland PL (1986) Porosity. In ‘Methods of soil analysis: part 1 physical and mineralogical methods, Vol. 5’. (Ed. A Klute) pp. 443–461. (American Society of Agronomy, Inc., Soil Science Society of America, Inc.: Madison, WI, USA)

Delgado S, Alliaume F, García Préchac F, Hernández J (2006) Efecto de las plantaciones de Eucalyptus sp. sobre el recurso suelo en Uruguay. Agrociencia 10, 95-107.
| Crossref | Google Scholar |

Fenn ME, Huntington TG, McLaughlin SB, Eagar C, Gomez A, Cook RB (2006) Status of soil acidification in North America. Journal of Forest Sciences 52, S3-S13.
| Crossref | Google Scholar |

Fernández Honaine M (2001) Estudio de la relación entre geomorfología, suelo, y vegetación de la Reserva Integral Laguna de los Padres, Buenos Aires: un instrumento para la gestión de manejo. Tesis de Grado. Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.

Fitzpatrick EA (1984) ‘Suelos: Su formación, clasificación y distribución.’ (CECSA: México)

Frouz J (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161-172.
| Crossref | Google Scholar |

Gaitán JJ, Penó EA, Costa MC (2005) Distribución de raíces finas de Eucalyptus globulus ssp. Maidenii y su relación con algunas propiedades del suelo. Ciência Florestal 15, 33-41.
| Crossref | Google Scholar |

Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81, 1120-1132.
| Crossref | Google Scholar |

Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Applied Soil Ecology 9, 17-23.
| Crossref | Google Scholar |

INTA (1991) ‘Carta de Suelos de la República Argentina, Hoja 3757-32-4.’ (Secretaría de Agricultura, Ganadería y Pesca (SAGyP)).

Jenny H (1980) ‘The soil resource: origin and behavior.’ (Springer Verlag: New York, NY, USA)

Jobbágy EG, Vasallo M, Farley KA, Piñeiro G, Garbulsky MF, Nosetto MD, Jackson RB, Paruelo JM (2006) Forestación en pastizales: hacia una visión integral de sus oportunidades y costos ecológicos. Agrociencia 10, 109-124.
| Crossref | Google Scholar |

Kandeler E, Kampichler C, Joergensen RG, Mölter K (1999) Effects of mesofauna in a spruce forest on soil microbial communities and N cycling in field mesocosms. Soil Biology and Biochemistry 31, 1783-1792.
| Crossref | Google Scholar |

Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27, 93-132.
| Crossref | Google Scholar |

Lions JC (1978) Éléments sur la distribution verticale des oribates dans les biotopes édaphiques d’un écosystème forestier. Revue D’ Écologie et de Biologie du Sol 15, 345-362.
| Google Scholar |

Lussenhop J (1992) Mechanisms of microarthropod-microbial interactions in soil. Advances in Ecological Research 23, 1-33.
| Crossref | Google Scholar |

Magurran AE (2004) ‘Measuring biological diversity.’ (Blackwell Publishing Company)

Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD (1995) Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies. Soil Biology and Biochemistry 27(12), 1589-1599.
| Crossref | Google Scholar |

Nielsen UN, Osler GHR, van der Wal R, Campbell CD, Burslem DFRP (2008) Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biology and Biochemistry 40(6), 1538-1541.
| Crossref | Google Scholar |

Norton RA, Behan-Pelletier VM (2009) Chapter 15: Oribatida. In ‘A manual of acarology’. (Eds GW Krantz, DE Walter) pp. 430–564. (Texas Tech University Press: Lubbock, TX, USA)

O’Brien ND, Attiwill PM, Weston CJ (2003) Stability of soil organic matter in Eucalyptus regnans forests and Pinus radiata plantations in south eastern Australia. Forest Ecology and Management 185, 249-261.
| Crossref | Google Scholar |

Osterrieth M, Fernández C, Bilat Y, Martínez P, Martínez G, Trassens M (1998) Geoecología de Argiudoles típicos afectados por prácticas hortícolas en la Llanura Pampeana. Buenos Aires, Argentina. In ‘Proceedings of the 16th World Congress of Soil Science’, Montpellier, Francia. pp. 1–8. (Association française pour l’étude du sol.)

Pande YD, Berthet P (1975) Observations on the vertical distribution of soil Oribatei in a woodland soil. Transactions of the Royal Entomological Society of London 127, 259-275.
| Crossref | Google Scholar |

Panigatti JL (2010) ‘Argentina: 200 años, 200 suelos.’ (Ministerio de Agricultura, Ganadería y Pesca: Buenos Aires (Argentina)). p. 345. Ediciones INTA.

Paruelo JM, Guerschman JP, Piñeiro G, Jobbagy EG, Verón SR, Baldi G, Baeza S (2006) Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrociencia 10, 47-61.
| Crossref | Google Scholar |

Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288-388.
| Crossref | Google Scholar |

Poore MED, Fries C (1987) ‘Efectos ecológicos de los eucaliptos.’ (FAO)

Price DW (1973) Abundance and vertical distribution of microarthropods in the surface layers of a California pine forest soil. Hilgardia 42, 121-147.
| Crossref | Google Scholar |

Rasband W (1997) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland.

Romanelli A, Quiroz Londoño OM, Martínez DE, Massone HE, Escalante AH (2014) Hydrogeochemistry and isotope techniques to determine water interactions in groundwater-dependent shallow lakes, Wet Pampa Plain, Argentina. Environmental Earth Sciences 71, 1953-1966.
| Crossref | Google Scholar |

Rousseau L, Venier L, Hazlett P, Fleming R, Morris D, Handa IT (2018) Forest floor mesofauna communities respond to a gradient of biomass removal and soil disturbance in a boreal jack pine (Pinus banksiana) stand of northeastern Ontario (Canada). Forest Ecology and Management 407, 155-165.
| Crossref | Google Scholar |

Scheu S, Ruess L, Bonkowski M (2005) Interactions between microorganisms and soil micro-and mesofauna. In ‘Microorganisms in soils: roles in genesis and functions’. (Eds A Varma, F Buscot) pp. 253–275. (Springer)

Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology 29, 25-46.
| Crossref | Google Scholar |

Sellan G, Thompson J, Majalap N, Robert R, Brearley FQ (2020) Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity. Pedobiologia 80, 150645.
| Crossref | Google Scholar |

Servicio Meteorológico Nacional de Argentina (2024) Argentina. Available at https://www.smn.gob.ar/

Sigovini M, Keppel E, Tagliapietra D (2016) Open nomenclature in the biodiversity era. Methods in Ecology and Evolution 7, 1217-1225.
| Crossref | Google Scholar |

Swift MJ, Heal OW, Anderson JM (1979) ‘Decomposition in terrestrial ecosystems.’ (University of California Press, Blackwell Scientific Publications: Berkeley, CA, USA)

Travé J, Vachon M (1975) François Grandjean 1882–1975 (Notice Biographique et Bibliographique). Acarología 17, 1-17.
| Google Scholar | PubMed |

Wallwork J (1969) Some basic principles underlying the classification and identification of cryptostigmatid mites. In ‘The soil ecosystem’. (Ed. JG Sheals) pp. 155–168. (The Systematics Association)

Wehner K, Norton RA, Blüthgen N, Heethoff M (2016) Specialization of oribatid mites to forest microhabitats – the enigmatic role of litter. Ecosphere 7(3), e01336.
| Crossref | Google Scholar |

Wurst S, de Deyn GB, Orwin K (2012) Soil biodiversity and functions. In ‘Soil ecology and ecosystem services’. (Eds DH Wall, RD Bardgett, V Behan-Pelletier, JE Herrick, T Hefin Jones, K Ritz, J Six, DR Strong, WH van der Putten) pp. 28–45. (Oxford University Press)

Yao H, Bowman D, Rufty T, Shi W (2009) Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: implications for soil enzyme activities and organic matter decomposition. Soil Biology and Biochemistry 41(7), 1425-1432.
| Crossref | Google Scholar |

Zalba P, Peinemann N (1987) Efecto de algunas especies forestales sobre ciertas propiedades fisicoquímicas del suelo. Ciencia del Suelo 5, 71-76.
| Google Scholar |