Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soil properties of sugarcane fields controlling triazine leaching potential

Rocio Portocarrero https://orcid.org/0000-0003-4176-3365 A C , Virginia Aparicio B , Eduardo de Gerónimo B and José Luis Costa B
+ Author Affiliations
- Author Affiliations

A Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Famaillá, Ruta Provincial 301, km 32 (PC 4132), Famailla, Tucumán, Argentina.

B INTA, Estación Experimental Agropecuaria Balcarce, Ruta 226, km 73.5 (PC 7620), Balcarce, Buenos Aires, Argentina.

C Corresponding author. Email: portocarrero.rocio@inta.gob.ar

Soil Research 57(7) 729-737 https://doi.org/10.1071/SR18342
Submitted: 20 November 2018  Accepted: 5 June 2019   Published: 21 August 2019

Abstract

Atrazine and ametryn are pre- and post-emergence herbicides widely used in sugarcane fields. Both are characterised by moderate to high mobility in soil and are regarded as a threat to hydrologic systems. Physical and chemical soil properties are highlighted as one of the factors governing the fate of pesticides in hydrologic systems. The aim of our study was to estimate the leaching potential of atrazine and ametryn in soils of the saline alluvial plain of Tucumán cultivated with sugarcane. Miscible displacement experiments were carried out in triplicate using undisturbed topsoil cores from four farm fields. Field 1 was in plant, fields 2 and 3 were in second ratoon, and field 4 was in third ratoon. Experimental breakthrough curves were fitted to the convection–dispersion equation; results showed that hydraulic transport was in equilibrium conditions, meaning that all soil water was involved in solute convective transport. Atrazine had asymmetric breakthrough curves, revealing chemical non-equilibrium conditions, with at least two sorption–desorption sites participating in the process. In contrast, ametryn concentrations in leached samples were low and inconsistent; therefore, no breakthrough curves could be described. Of the total applied, recoveries reached 10% and 2% for leached atrazine and ametryn respectively. For an estimated annual recharge of 100 mm, these leached amounts would exceed international reference values for drinking water.

Additional keywords: ametryn, atrazine, energy crops, miscible displacement, Tucumán.


References

Acevedo N (2012) Evaluación hidrogeológica del sector oeste de los departamentos Cruz Alta y Leales, provincia de Tucumán, República Argentina. (Universidad Nacional de Tucumán: San Miguel de Tucumán, Argentina.)

Ahmad R, Kookana RS, Alston AM (2001) Sorption of ametryn and imazethapyr in twenty-five soils from Pakistan and Australia. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 36, 143–160.
Sorption of ametryn and imazethapyr in twenty-five soils from Pakistan and Australia.Crossref | GoogleScholarGoogle Scholar | 11409495PubMed |

Akyol NH (2015) Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil. Chemosphere 119, 1027–1032.
Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.Crossref | GoogleScholarGoogle Scholar | 25303664PubMed |

Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized method for evaluating ground water pollution potential using hydrogeologic settings. NWWA/Epa-600/2–87–035 455. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Ada, OK, USA.

Aranda ED, Arroyo EA, Sanzano GA, Madrid RF, Sorol PM (2016) Indicadores de calidad de suelos para caña de azúcar en la llanura deprimida salina de la provincia de Tucuman. In ‘XX Reunión Técnica Nacional de la Caña de azúcar’, 6–8 April, San Miguel de Tucumán, Tucumán, Argentina. (Sociedad Argentina de Técnicos de la Caña de Azúcar).

Arruda EM, Ferraz de Almeida R, da Silva Domingues LA, da Silva Junior AC, Rodrigues de Moraes E, Rodrigues Barros L, de Oliveira Sousa JL, Quintao Lana RM (2016) Soil porosity and density in sugarcane cultivation under different tillage systems. African Journal of Agricultural Research 11, 2689–2696.
Soil porosity and density in sugarcane cultivation under different tillage systems.Crossref | GoogleScholarGoogle Scholar |

ARS USDA (1995) ARS pesticide properties. Ametryn. Available at https://www.ars.usda.gov/ARSUserFiles/00000000/DatabaseFiles/PesticidePropertiesDatabase/IndividualPesticideFiles/AMETRYN.TXT [verified 3 July 2019].

ARS USDA (2001) ARS pesticide properties database. Atrazine. Available at https://www.ars.usda.gov/ARSUserFiles/00000000/DatabaseFiles/PesticidePropertiesDatabase/IndividualPesticideFiles/ATRAZINE.TXT [verified 3 July 2019].

Bedmar F, Costa JL, Gimenez D (2008) Column tracer studies in surface and subsurface horizons of two typic argiudolls. Soil Science 173, 237–247.
Column tracer studies in surface and subsurface horizons of two typic argiudolls.Crossref | GoogleScholarGoogle Scholar |

Bedmar F, Daniel PE, Costa JL, Giménez D (2011) Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina. Environmental Toxicology and Chemistry 30, 1990–1996.
Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.Crossref | GoogleScholarGoogle Scholar | 21692102PubMed |

Bell MJ, Stirling GR, Pankhurst CE (2007) Management impacts on health of soils supporting Australian grain and sugarcane industries. Soil & Tillage Research 97, 256–271.
Management impacts on health of soils supporting Australian grain and sugarcane industries.Crossref | GoogleScholarGoogle Scholar |

Benedetti P (2018) Primer relevamiento del área cultivada con caña en Argentina a través de imágenes satelitales. INTA 5. Available at https://inta.gob.ar/sites/default/files/inta-_informe_relevamiento_del_cultivo_ de_cana_de_azucar_en_argentina_durante_el_2018_a_partir_de_ imagenes_satelitales_1_0.pdf [verified 3 July 2019].

Caprile AC, Aparicio VC, Portela SI, Sasal MC, Andriulo AE (2017) Drenaje y transporte vertical de herbicidas en dos molisoles de la pampa ondulada Argentina. Ciencia del Suelo 35, 147–159.

Centurion JF, da Silva Fredi O, Garcia Aratani R, Mangeti Metzner AF, Beutler AN, Andrioli I (2007) Influência do cultivo da cana-de-açúcar e da mineralogia da fração argila nas propriedades físicas de latossolos vermelhos. Revista Brasileira de Ciência do Solo 31, 199–209.
Influência do cultivo da cana-de-açúcar e da mineralogia da fração argila nas propriedades físicas de latossolos vermelhos.Crossref | GoogleScholarGoogle Scholar |

Chefetz B, Bilkis YI, Polubesova T (2004) Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Research 38, 4383–4394.
Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments.Crossref | GoogleScholarGoogle Scholar | 15556213PubMed |

Comisión de las Comunidades Europeas (2004) Decisión de la Comisión de 10 de marzo de 2004 relativa a la no inclusión de la atrazina en el anexo I de la Directiva 91/414/CEE del Consejo y a la retirada de las autorizaciones de los productos fitosanitarios que contengan esta sustancia activa. Diario Oficial de la Unión Europea: Comunidad Europea.

Correa R, Sosa F, Cervera B, De La Rosa G, Romero J, Sanzano A (2016) Evaluación de la compactación de suelos cultivados con caña de azúcar bajo dos regímenes de humedad en la llanura Chaco Pampeana de la provincia de Tucumán. In ‘XX Reunión Técnica Nacional de la Caña de azúcar’, 6–8 April, San Miguel de Tucumán, Tucumán, Argentina. (Sociedad Argentina de Técnicos de la Caña de Azúcar)

Daniel PE, Bedmar F, Costa JL, Aparicio VC (2002) Atrazine and metribuzin sorption in soils of the Argentinean humid pampas. Environmental toxicology and chemistry / SETAC 21, 2567–2572.
Atrazine and metribuzin sorption in soils of the Argentinean humid pampas.Crossref | GoogleScholarGoogle Scholar |

De Gerónimo E, Aparicio VC, Bárbaro S, Portocarrero R, Jaime S, Costa JL (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107, 423–431.
Presence of pesticides in surface water from four sub-basins in Argentina.Crossref | GoogleScholarGoogle Scholar | 24548646PubMed |

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat version 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at: http://www.infostat.com.ar [verified 13 August 2019]

Elías AI (2014) Caracterización hidrogeológica de sector central de los departamentos Cruz Alta y Leales, provinica de Tucumán, República Argentina. (Universidad Nacional de Tucumán: San Miguel de Tucumán, Argentina)

EPA (2009) National Primary Drinking Water Regulations. (United States Environmental Protection Agency: Washington DC, USA) EPA 816-F-09–004

Farruggia FT, Rossmeisl CM, Hetrick JA, Biscoe M (2016) Refined ecological risk assessment for atrazine. (United States Environmental Protection Agency: Washington DC, USA). Available at https://www.biologicaldiversity.org/campaigns/pesticides_reduction/pdfs/AtrazinePreliminaryERA.pdf [verified 8 July 2019]

Ferreira ASG, Silva HCMP, Rodrigues HOS, Silva M, de Albuquerque Junior EC (2016) Occurrence and spatial-temporal distribution of herbicide residues in the Ipojuca River sub-basin, Pernambuco, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 20, 1124–1128.
Occurrence and spatial-temporal distribution of herbicide residues in the Ipojuca River sub-basin, Pernambuco, Brazil.Crossref | GoogleScholarGoogle Scholar |

Figueroa LR, Medina LF, Pietroboni AM (1996) Variaciones del nivel freático en la llanura deprimida de Tucumán. Serie Monográfica N°3. (INTA-CRTS: Argentina)

Finizio A, Vighi M, Sandroni D (1997) Determination of n-octanol/water partition coefficient (Kow) of pesticide. Critical review and comparison of methods. Chemosphere 34, 131–161.
Determination of n-octanol/water partition coefficient (Kow) of pesticide. Critical review and comparison of methods.Crossref | GoogleScholarGoogle Scholar | )

Ghafoor A, Koestel J, Larsbo M, Moeys J, Jarvis N (2013) Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale. Journal of Hydrology 492, 190–199.
Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale.Crossref | GoogleScholarGoogle Scholar |

Gramatica P, Corradi M, Consonni V (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41, 763–777.
Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.Crossref | GoogleScholarGoogle Scholar | 10834380PubMed |

Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry 8, 339–357.
Groundwater ubiquity score: a simple method for assessing pesticide leachability.Crossref | GoogleScholarGoogle Scholar |

Huang Y, Liu Z, He Y, Zeng F, Wang R (2013) Quantifying effects of primary parameters on adsorption-desorption of atrazine in soils. Journal of Soils and Sediments 13, 82–93.
Quantifying effects of primary parameters on adsorption-desorption of atrazine in soils.Crossref | GoogleScholarGoogle Scholar |

Jablonowski ND, Köppchen S, Hofmann D, Schäffer A, Burauel P (2009) Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years. Environmental Pollution 157, 2126–2131.
Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years.Crossref | GoogleScholarGoogle Scholar | 19264386PubMed |

Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores : principles, controlling factors and consequences for water quality. European Journal of Soil Science 58, 523–546.
A review of non-equilibrium water flow and solute transport in soil macropores : principles, controlling factors and consequences for water quality.Crossref | GoogleScholarGoogle Scholar |

Jarvis N (2016) Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the koc concept? The Science of the Total Environment 539, 294–303.
Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the koc concept?Crossref | GoogleScholarGoogle Scholar | 26363724PubMed |

Jorrat M del M, Araujo PZ, Mele FD (2018) Sugarcane water footprint in the province of Tucumán, Argentina. Comparison between different management practices. Journal of Cleaner Production 188, 521–529.
Sugarcane water footprint in the province of Tucumán, Argentina. Comparison between different management practices.Crossref | GoogleScholarGoogle Scholar |

Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. Reviews of Environmental Contamination and Toxicology 188, 149–217.
Adsorption of ionisable pesticides in soils.Crossref | GoogleScholarGoogle Scholar | 17016919PubMed |

Kamra SK, Lennartz B, Van Genuchten MT, Widmoser P (2001) Evaluating non-equilibrium solute transport in small soil columns. Journal of Contaminant Hydrology 48, 189–212.
Evaluating non-equilibrium solute transport in small soil columns.Crossref | GoogleScholarGoogle Scholar | 11285931PubMed |

Kasozi GN, Nkedi-Kizza P, Li Y, Zimmerman AR (2012) Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. Environmental Pollution 169, 12–19.
Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin.Crossref | GoogleScholarGoogle Scholar | 22659728PubMed |

Keller T, Håkansson I (2010) Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154, 398–406.
Estimation of reference bulk density from soil particle size distribution and soil organic matter content.Crossref | GoogleScholarGoogle Scholar |

Kempf A, Brusseau ML (2009) Impact of non-ideal sorption on low-concentration tailing behavior for atrazine transport in two natural porous media. Chemosphere 77, 877–882.
Impact of non-ideal sorption on low-concentration tailing behavior for atrazine transport in two natural porous media.Crossref | GoogleScholarGoogle Scholar | 19699507PubMed |

Koestel JK, Moeys J, Jarvis NJ (2012) Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport. Hydrology and Earth System Sciences 16, 1647–1665.
Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport.Crossref | GoogleScholarGoogle Scholar |

Larsson MH, Jarvis NJ (2000) Quantifying interactions between compound properties and macropore flow effects on pesticide leaching. Pest Management Science 56, 133–141.
Quantifying interactions between compound properties and macropore flow effects on pesticide leaching.Crossref | GoogleScholarGoogle Scholar |

LeBaron HM, McFarland JE, Burnside OC (2008) Chapter 1 - The triazine herbicides: a milestone in the development of weed control technology. In ‘The triazine herbicides’. (Eds HM LeBaron, JE McFarland, OC Burnside), pp. 1–12 (Elsevier Science). 10.1016/B978-044451167-6.50004-0

Lesan HM, Bhandari A (2003) Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis. Water Research 37, 1644–1654.
Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis.Crossref | GoogleScholarGoogle Scholar | 12600393PubMed |

Lewis SE, Brodie JE, Bainbridge ZT, Rohde KW, Davis AM, Masters BL, Maughan M, Devlin MJ, Mueller JF, Schaffelke B (2009) Herbicides: a new threat to the Great Barrier Reef. Environmental Pollution 157, 2470–2484.
Herbicides: a new threat to the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 19349104PubMed |

Li H, Feng Y, Li X, Zeng D (2018) Analytical confirmation of various herbicides in drinking water resources in sugarcane production regions of Guangxi, China. Bulletin of Environmental Contamination and Toxicology 100, 815–820.
Analytical confirmation of various herbicides in drinking water resources in sugarcane production regions of Guangxi, China.Crossref | GoogleScholarGoogle Scholar | 29564484PubMed |

Montoya JC, Costa JL, Liedl R, Bedmar F, Daniel P (2006) Effects of soil type and tillage practice on atrazine transport through intact soil cores. Geoderma 137, 161–173.
Effects of soil type and tillage practice on atrazine transport through intact soil cores.Crossref | GoogleScholarGoogle Scholar |

NHMRC NRMMC (2011) Australian drinking water guidelines Paper 6 National Water Quality Management Strategy. (National Health and Medical Research Council, National Resource Management Ministerial Council: Canberra)

Okada E, Costa JL, Bedmar F, Barbagelata P, Irizar A, Rampoldi EA (2014) Effect of conventional and no-till practices on solute transport in long term field trials. Soil & Tillage Research 142, 8–14.
Effect of conventional and no-till practices on solute transport in long term field trials.Crossref | GoogleScholarGoogle Scholar |

Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263, 78–85.
Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage.Crossref | GoogleScholarGoogle Scholar |

Park JY, Huwe B (2016) Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environmental Pollution 213, 561–570.
Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.Crossref | GoogleScholarGoogle Scholar | 26995452PubMed |

Perfect E, Sukop MC, Haszler GR (2002) Prediction of dispersivity for undisturbed soil columns from water retention parameters. Soil Science Society of America Journal 66, 696–701.
Prediction of dispersivity for undisturbed soil columns from water retention parameters.Crossref | GoogleScholarGoogle Scholar |

Pfeuffer RJ (2011) South Florida water management district ambient pesticide monitoring network: 1992 to 2007. Environmental Monitoring and Assessment 182, 485–508.
South Florida water management district ambient pesticide monitoring network: 1992 to 2007.Crossref | GoogleScholarGoogle Scholar | 21340551PubMed |

Pignatello JJ (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Advances in Agronomy 69, 1–73.

Puchulu ME, Fernandez DS (2016) Características y distribución espacial de los suelos de la provincia de Tucumán. In ‘Geología de Tucumán’. (Eds S Moyano, ME Puchulu, D Fernandez, G Aceñolasa, ME Vides, S Nieva) pp. 1–17. (Colegio de Graduados en Ciencias Geológicas de Tucumán: San Miguel de Tucumán, Argentina)

Queiroz ME, Lanças FM (1997) HRGC study of sorption and desorption of atrazine, ametryn and metolachlor on Brazilian soils. Journal of the Brazilian Chemical Society 8, 1–6.

SENASA (2016) LMR de principios activos por cultivo. Available at http://www.senasa.gov.ar/informacion/prod-vet-fito-y-fertilizantes/prod-fitosanitarios-y-fertili/registro-nacional-de-terapeutica-vegetal [verified 3 July 2019].

Silva LOC, Silva AA, DÁntonino L, Quieroz MEL, Lima CF, Freitas FCL (2012) Sorption and desorption of ametryn in Brazilian Latosols. Planta Daninha 30, 633–640.
Sorption and desorption of ametryn in Brazilian Latosols.Crossref | GoogleScholarGoogle Scholar |

Simunek J, van Genuchten MT, Sejna M, Toride N, Leij FJ (1999) ‘The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0.’ (U.S. Salinity Laboratory, USDA ARS: Riverside, CA, USA)

Souza GS, Souza ZM, Barboza R, Barbosa RS, Araújo FS (2014) Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo 38, 135–146.
Effects of traffic control on the soil physical quality and the cultivation of sugarcane.Crossref | GoogleScholarGoogle Scholar |

Tesouro MO, Roba MA, Fernández de Ullivarri E, Venturelli L, Neiman OE, Romito A, Donato LB (2016) Resultados iniciales de un ensayo de sistemas de manejo de caña de azúcar. In ‘XX Reunión Técnica Nacional de la Caña de azúcar’, 6–8 April, San Miguel de Tucumán, Tucumán, Argentina. (Sociedad Argentina de Técnicos de la Caña de Azúcar) Available at: https://inta.gob.ar/documentos/resultados-iniciales-de-un-ensayo-de-manejo-del-cultivo-de-cana [verified 8 July 2019]

Tindall J, Friedel MJ (2016) Transport of atrazine versus bromide and δO18 in sand. Water, Air, and Soil Pollution 227, 294
Transport of atrazine versus bromide and δO18 in sand.Crossref | GoogleScholarGoogle Scholar |

Tineo A, Falcón CM, García JW, D’Urso CH, Galindo G, Rodriguez GV (1998) Hidrogeología. In ‘Geología de Tucumán’. (Eds M Gianfrancisco, ME Puchulu, J Durango de Cabrera, GF Aceñolaza) pp. 259–274. (Colegio de Graduados en Ciencias Geológicas de Tucumán: San Miguel de Tucumán, Argentina)

Toride N, Leij FJ, van Genuchten MT (1995) ‘The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. versión 2.0.’ (U.S. Salinity Laboratory, USDA ARS: Riverside, CA, USA)

Torres JLR, Silva VR, Assis RL, Souza ZM, Vieira DMdS, Tamburús AY (2016) Soil physical quality after the fifth and sixth harvest of sugarcane in Brazilian Cerrado. Australian Journal of Crop Science 10, 1306–1311.
Soil physical quality after the fifth and sixth harvest of sugarcane in Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar |

United States Environmental Protection Agency (2005) Reregistration eligibility decision (RED) for ametryn. EPA 738-R-05–006. Available at: https://archive.epa.gov/pesticides/reregistration/web/pdf/ametryn_red.pdf [verified 8 July 2019]

Van Genuchten MT (1981) ‘Non-equilibrium transport parameters from miscible displacement experiments.’ Research report no. 119. (United States Department of Agriculture Science and Education Administration, US Salinity Laboratory: Riverside, CA, USA)

Vonberg D, Hofmann D, Vanderborght J, Lelickens A, Köppchen S, Pütz T, Burauel P, Vereecken H (2014) Atrazine soil core residue analysis from an agricultural field 21 years after its ban. Journal of Environmental Quality 43, 1450–1459.
Atrazine soil core residue analysis from an agricultural field 21 years after its ban.Crossref | GoogleScholarGoogle Scholar | 25603092PubMed |

Wauchope RD, Yeh S, Linders JBHJ, Kloskowski R, Tanaka K, Rubin B, Katayama A, Ko W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science 58, 419–445.
Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability.Crossref | GoogleScholarGoogle Scholar | 11997969PubMed |

Wood BP, Gumbs F, Headley JV (2002) Distribution and occurrence of atrazine, deethylatrazine, and ametryne residues in groundwater of the tropical island Barbados. Communications in Soil Science and Plant Analysis 33, 3501–3515.
Distribution and occurrence of atrazine, deethylatrazine, and ametryne residues in groundwater of the tropical island Barbados.Crossref | GoogleScholarGoogle Scholar |

Yue L, Ge C, Feng D, Yu H, Deng H, Fu B (2017) Adsorption – desorption behavior of atrazine on agricultural soils in China. Journal of Environmental Sciences (China) 57, 180–189.
Adsorption – desorption behavior of atrazine on agricultural soils in China.Crossref | GoogleScholarGoogle Scholar |

Zuccardi RB, Fadda GS (1985) ‘Bosquejo agroecologico de la provincia de Tucumán. Miscelanea No. 86.’ (Universidad Nacional de Tucumán, Facultad de Agronomía y Zootecnia: San Miguel de Tucumán, Argentina)