Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil

L. van Zwieten A E , S. Kimber A , A. Downie B C , S. Morris A , S. Petty A , J. Rust A and K. Y. Chan D
+ Author Affiliations
- Author Affiliations

A NSW Industry and Investment, 1243 Bruxner Highway, Wollongbar, NSW 2477, Australia.

B Pacific Pyrolysis P/L, Somersby, NSW 2250, Australia.

C University of New South Wales, School of Materials Science and Engineering, Sydney, NSW 2052, Australia.

D NSW Industry and Investment, Richmond, NSW 2753, Australia.

E Corresponding author. Email: lukas.van.zwieten@industry.nsw.gov.au

Australian Journal of Soil Research 48(7) 569-576 https://doi.org/10.1071/SR10003
Submitted: 5 January 2010  Accepted: 23 June 2010   Published: 28 September 2010

Abstract

The effect of a low mineral ash biochar on biomass production and nitrogen (N) uptake into plants was tested with wheat and radish in a Yellow Earth used for commercial vegetable production. The biochar had an acid neutralising capacity <0.5% CaCO3, a total C content of 75%, and a molar H/C ratio of 0.45, indicating stability due to its aromaticity. A pot trial was established under climate-controlled conditions. Five rates of N fertiliser (0, 17, 44, 88, 177 kg N/ha) were applied as urea in combination with 5 biochar rates (0, 1.1, 2.2, 4.4, 11% w/w). Analysis of biomass production revealed a significant biochar × N fertiliser interaction. In particular, increasing biochar concentrations improved biomass production in both crop species at lower N application rates. The highest biochar application rate resulted in significantly greater accumulation of NO3 -N in the soil and lower NH4 +-N averaged across the 5 N application rates. The biochar also decreased available P, and significantly increased microbial activity measured using the fluorescein diacetate method. Increasing N fertiliser application resulted in greater accumulation of NO3 -N with no changes to NH4 +-N averaged across the 5 biochar application rates. Nitrogen fertiliser application did not influence microbial activity or biomass C. The trial suggests that in some cropping systems, biochar application will enable reduced N fertiliser input while maintaining productivity.

Additional keywords: biomass production, low mineral ash biochar, microbial activity, nitrogen, yellow earth.


Acknowledgments

The authors acknowledge the financial support from the NSW Climate Action Grant (T07/CAG/02) and Industry and Investment NSW for co-funding this project. We also acknowledge the inputs from Craig Hunt and Glen Rangott for the analysis of biochars, plant tissue, and soils. Carolyn Jenkinson from Industry and Investment Gosford is thanked for providing advice and assisting in the collection of soils for this study.


References


Baligar VC, Bennett OL (1986) Outlook on fertilizer use efficiency in the tropics. Fertilizer Research 10, 83–96.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis 32, 921–950.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems 46, 53–70.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60, 309–319.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Butler D , Cullis B , Gilmour R , Gogel B (2007) ‘ASReml-R reference manual.’ (Publications Department of Primary Industries and Fisheries: Brisbane, Qld) Available at: www.vsn-intl.com/products/asreml/

Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140.
PubMed |
open url image1

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45, 629–634.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chan YK, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46, 437–444.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37, 1477–1488.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Science Society of America Journal 70, 448–453.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Dieckow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kogel-Knabner I (2007) Comparison of carbon and nitrogen determination methods for samples of a paleudult subjected to no-till cropping systems. Scientia Agricola 64, 532–540.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Doran JW (1986) Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biology and Fertility of Soils 5, 68–75. open url image1

Downie A , Crosky A , Munroe P (2009) Physical properties of biochar. In ‘Biochar for environmental management’. (Eds J Lehmann, S Joseph) pp. 13–22. (Earthscan Publications Ltd: London)

FIFA (2008) Fertilizer Industry Environment Report (2007), Canberra, ACT. Available at: www.fifa.asn.au/files/pdf/environment/ecoefficiency/2007%20Fertilizer%20Industry%20Public%20Environment%20Report.pdf

Fontvieille DA, Outaguerouine A, Thevenot DR (1992) Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: Application to activated sludges. Environmental Technology 13, 531–540.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gilmour A, Cullis B, Verbyla A (1997) Accounting for natural and extraneous variation in the analysis of field experiments. Journal of Agricultural, Biological & Environmental Statistics 2, 269–293.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. Forest Ecology and Management 231, 86–93.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hammes K , Schmidt MWI (2009) Changes of biochar in soil. In ‘Biochar for environmental management’. (Eds J Lehmann, S Joseph) (Earthscan Publications Ltd: London)

Hua L, Wu WX, Liu YX, McBride M, Chen YX (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science and Pollution Research 16, 1–9.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Isbell RF (1996) ‘The Australian Soil Classification.’ (CSIRO Publishing: Collingwood, Vic.)

Joseph SD , Munroe P , Privat K , Lin Y , Chia CH , Downie A , Hook J , Shasha A , Van Zwieten L , Kimber S , Cowie A , Singh BP , Lehmann J , Amonette JE , Carter E , Smernik R (2009) The reaction of soil with high and low mineral ash content biochars. In ‘1st Asia-Pacific Biochar Conference Proceedings’. pp. 75–76. (NSW Department of Primary Industry: Sydney)

Karrou M, Maranville JW (1993) Seedling vigor and nitrogen use efficiency of Moroccan wheat as influenced by level of soil nitrogen. Communications in Soil Science and Plant Analysis 24, 1153–1163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Khalil MI, Buegger F, Schraml M, Gutser R, Richards KG, Schmidhalter U (2009) Gaseous nitrogen losses from a Cambisol cropped to spring wheat with urea sizes and placement depths. Soil Science Society of America Journal 73, 1335–1344.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality 36, 1821–1832.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11, 726–739.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal 73, 1173–1181.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Krull ES , Baldock JA , Skjemstad JO , Smernik RJ (2009) Characteristics of biochar: organo-chemical properties. In ‘Biochar for environmental management’. (Eds J Lehmann, S Joseph) pp. 53–65. (Earthscan Publications Ltd: London)

Kurth VJ, MacKenzie MD, DeLuca TH (2006) Estimating charcoal content in forest mineral soils. Geoderma 137, 135–139.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitigation and Adaptation Strategies for Global Change 11, 403–427.
Crossref | GoogleScholarGoogle Scholar | open url image1

Major J , Steiner C , Downie A , Lehmann J (2009) Biochar effects on nutrient leaching. In ‘Biochar for environmental management’. (Eds J Lehmann, S Joseph) pp. 271–287. (Earthscan Publications Ltd: London)

Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research 48, 638–647. open url image1

Newton PJ (2001) Effect of long-term stubble management on yield and nitrogen-uptake efficiency of wheat topdressed with urea in north-eastern Victoria. Australian Journal of Experimental Agriculture 41, 1167–1178.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Olarewaju OE, Adetunji MT, Adeofun CO, Adekunle IM (2009) Nitrate and phosphorus loss from agricultural land: implications for nonpoint pollution. Nutrient Cycling in Agroecosystems 85, 79–85.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Olness A, Lopez D, Archer D, Cordes J, Sweeney C, Mattson N, Rinke J, Voorhees WB (2001) Factors affecting microbial formation of nitrate-nitrogen in soil and their effects on fertilizer nitrogen use efficiency. The Scientific World Journal 1, 122–129.
Crossref | GoogleScholarGoogle Scholar | open url image1

R Development Core Team (2008) ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna) Available at: www.R-project.org

Rayment GE , Higginson FR (1992) ‘Australian laboratory handbook of soil and water chemical methods.’ (Inkata Press: Melbourne, Vic.)

Sharpley AN, Smith SJ (1994) Wheat tillage and water quality in the southern plains. Soil & Tillage Research 30, 33–48.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shoji S, Delgado J, Mosier A, Miura Y (2001) Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science and Plant Analysis 32, 1051–1070.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Singh B, Singh BP, Cowie AL (2010a) Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48, 516–525. open url image1

Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010b) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality 39, 1224–1235.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science 171, 893–899.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

van Zwieten L , Bhupinderpal-Singh , Joseph S , Kimber S , Cowie A , Chan Y (2009) Biochar reduces emissions of non-CO2 GHG from soil. In ‘Biochar for environmental management’. (Eds J Lehmann, S Joseph) pp. 227–249. (Earthscan Publications Ltd: London)

van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327, 235–246.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry 19, 703–707.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76, 665–671.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zelles L, Adrian P, Bai QY, Stepper K, Adrian MV, Fisher K, Maier A, Ziegler A (1991) Microbial activity in soils stored under different temperatures and humidity conditions. Soil Biology & Biochemistry 23, 955–962.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1