Supplementary material for

Importance of sugarcane straw maintenance to prevent soil organic matter depletion in a Nitisol in the central-southern region of Brazil

Gustavo V. Popin^{A,C}, *Arthur K. B. Santos*^A, *Paul L. A. Melo*^B, *Maurício R. Cherubin*^A, *Carlos E. P. Cerri*^A and Marcos Siqueira-Neto^B

^ACollege of Agriculture 'Luiz de Queiroz', University of São Paulo. Av. Pádua Dias, 11, 13400-970, Piracicaba, SP, Brazil.

^BCenter for Nuclear Energy in Agriculture, University of São Paulo. Av. Centenário, 303, PO Box.
96, 13400-970, Piracicaba, SP, Brazil.

^cCorresponding author. Email: gustavo.popin@usp.br

Material and methods

Equations to calculate the carbon management index (CMI) as described in Blair et al. (1995):

$$CMI(\%) = CPI \times LI \times 100$$

Where, CPI is the carbon pool index (equation S1) and LI is the lability index (equation S2)

$$CPI = \left(\frac{C_{treat}}{C_{ref}}\right)$$
(S1)

Where, C_{treat} is the soil C stocks under treatments (MR, HR and TR) and C_{ref} is the soil C stocks under reference area (NR)

$$LI = \left(\frac{L_{treat}}{L_{ref}}\right)$$
(S2)

Where, *L_{treat}* is the C lability (equation S3) under treatments (MR, HR and TR) and *L_{ref}* is the C lability under reference area (NV)

$$L = \left(\frac{C_L}{C - C_L}\right) \tag{S3}$$

Where, C_L is the labile-C fraction (g m⁻²) and C is the soil C stocks (g m⁻²)

Results

	tatistical al	laryses resp		anables stue			î îlî îgaraçu do	11ctc, 5a0 1	auto state -	- DIaZII		
Analyses responses	[†] C	Ν	CL	MBC	MBN	C:N	MBC:MBN	MBC:C	MBN:N	CL:C	MBC:CL	CMI
						– First yea	r [§]					· · · · · · · · · · · ·
F-value blocks	1.451 ^{ns}	1.046 ^{ns}	1.579 ^{ns}	1.701 ^{ns}	2.530 ^{ns}	1.504 ^{ns}	1.534 ^{ns}	0.137 ^{ns}	2.554 ^{ns}	0.326 ^{ns}	3.678 ^{ns}	0.4330 ^{ns}
<i>F</i> -value treatments	0.958 ^{ns}	0.901 ^{ns}	3.712 ^{ns}	2.314 ^{ns}	2.554 ^{ns}	1.262 ^{ns}	2.087 ^{ns}	1.918 ^{ns}	1.615 ^{ns}	2.051 ^{ns}	1.125 ^{ns}	27.531**
SMD	3.51	0.55	9.26	10.25	1.07	2.55	4.91	0.52	0.57	0.65	6.09	5.09
C.V.(%)	5.93	10.82	4.74	9.35	15.41	9.79	13.62	12.70	19.05	8.91	4.90	2.48
						Second ye	ar ———					<u> </u>
F-value blocks	1.437 ^{ns}	0.984 ^{ns}	1.803 ^{ns}	1.683 ^{ns}	2.315 ^{ns}	1.527 ^{ns}	1.643 ^{ns}	0.135 ^{ns}	2.057 ^{ns}	0.323 ^{ns}	3.795 ^{ns}	0.935 ^{ns}
<i>F</i> -value treatments	15.938*	0.131 ^{ns}	20.134 **	49.957 **	12.147 **	1.172 ^{ns}	15.912**	3.679 ^{ns}	8.082^{*}	3.974*	3.565 ^{ns}	34.651**
SMD	1.01	0.17	11.28	17.05	2.03	2.73	2.62	0.98	0.26	0.52	7.52	4.36
C.V.(%)	5.88	11.44	9.85	15.01	13.49	8.99	13.81	12.51	9.70	8.82	4.87	2.32

Table S1. Statistical analyses responses for variables studied in an Eutric Nitisol in Igaraçú do Tietê, São Paulo state – Brazil

[†] Variables: C = C stock; N = N stock; C_L = labile-C; MBC = microbial biomass carbon; MBN = microbial biomass nitrogen; CMI = carbon management index. [§]First year: October 2015 to November 2016, Second year: November 2016 to October 2017. SMD = significant minimum difference; C.V. = coefficient of variation. ** significance level at 1%; * significance level at 5%; ns = no significant.

Table S2. Soil temperature and moisture to different rates of straw removal in an Eutric Nitisol in Igaraçú do Tietê, São Paulo state – Brazil. NR: no removal; MR: medium removal; HR: high removal; TR: Total removal.

Sampled		H	First year	§		Second year							
days	30 d	60 d	120 d	180 d	360 d	30 d	60 d	120 d	180 d	360 d			
	Soil temperature (°C) ^{\dagger}												
NR	25.4	25.6	23.4	19.2	22.0	24.6	26.6	26.6	19.3	22.7			
MR	26.3	26.2	23.6	19.3	22.7	25.1	27.3	26.4	19.8	22.6			
HR	26.9	27.9	24.7	19.8	23.1	25.9	28.0	22.7	19.8	22.9			
TR	27.1	28.7	24.8	19.6	23.2	26.1	28.2	22.7	20.1	22.8			
	Soil moisture (g g ⁻¹ soil) [‡]												
NR	0.15	0.16	0.13	0.12	0.16	0.14	0.17	0.14	0.11	0.15			
MR	0.12	0.14	0.13	0.12	0.16	0.13	0.15	0.15	0.11	0.15			
HR	0.11	0.13	0.13	0.12	0.15	0.11	0.13	0.12	0.11	0.14			
TR	0.11	0.12	0.13	0.12	0.15	0.10	0.13	0.10	0.09	0.14			

[§] First year: October 2015 to November 2016, Second year: November 2016 to October 2017. [†] Soil temperature (°C) was recorded at three points using an automated system that performs one measurement per hour and is equipped with copper–constantan thermopile sensors installed at the 5 cm soil depths. [‡] Soil moisture (g g⁻¹ soil) was determined on disturbed samples collected from three points at the 5 cm soil depths. Soil water content was determined by oven-drying (105°C) the samples until constant mass was reached.