Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Chemical fertility of krasnozems - a review

PW Moody

Australian Journal of Soil Research 32(5) 1015 - 1041
Published: 1994

Abstract

Krasnozems (Ferrosols) characteristically have high contents of citrate-dithionite extractable Fe and moderate to high contents of clay throughout the profile. They typically have low cation exchange capacity (2-20 cmolc kg-1), high P sorbing ability, and a significant anion exchange capacity at depth. The chemistry of krasnozems is dominated by the variable charge characteristics of the organic matter and the oxy-hydroxides of Fe and Al which occur in the predominantly kaolinitic clay fraction. The effects of surface charge characteristics, organic matter, and extractable iron and aluminium on the cation and anion exchange capacities, P sorbing abilities and pH buffer capacities of Australian krasnozems are reviewed. A selection of reports of nutrient deficiencies and toxicities in these soils is presented and briefly discussed. Published data on the chemical composition of the soil solutions of krasnozems are reviewed. Data from a suite of paired (undeveloped and developed) krasnozem profiles from eastern Australia indicate that exchangeable Ca and Mg, effective cation exchange capacity (ECEC), pH buffer capacity (pHBC) and total N decrease significantly (P < 0.05) in the A horizon following development, while exchangeable K, ECEC and pHBC decrease (P < 0-05) in the B horizon. The decreases in the A horizon are shown to be a direct consequence of the decline in organic matter which occurs following development. Because of the crucial role that organic matter plays in the chemical fertility of krasnozems, they are less likely to maintain their fertility under exploitative conditions than other productive clay soils such as Vertosols. It is concluded that the sustainable use of krasnozems will depend on maintenance or enhancement of organic matter levels, maintenance of surface and subsoil pH by regular application of amendments, minimization of erosion, and replacement of nutrients removed in harvested products.

Keywords: Chemical Fertility; Krasnozems; Ferrosols; Management; Oxisols; Soil Chemical Properties;

https://doi.org/10.1071/SR9941015

© CSIRO 1994

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions