Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models

Álvaro José Gomes de Faria A , Sérgio Henrique Godinho Silva A , Leônidas Carrijo Azevedo Melo https://orcid.org/0000-0002-4034-4209 A , Renata Andrade A , Marcelo Mancini A , Luiz Felipe Mesquita B , Anita Fernanda dos Santos Teixeira A , Luiz Roberto Guimarães Guilherme A and Nilton Curi https://orcid.org/0000-0002-2604-0866 A C
+ Author Affiliations
- Author Affiliations

A Federal University of Lavras, Soil Science Department, PO Box 3037, 37200-000, Lavras – MG, Brazil.

B Suzano Papel e Celulose, Espírito Santo, ES, Brazil.

C Corresponding author: Email: niltcuri@ufla.br

Soil Research 58(7) 683-695 https://doi.org/10.1071/SR20136
Submitted: 9 May 2020  Accepted: 24 July 2020   Published: 19 August 2020

Abstract

Portable X-ray fluorescence (pXRF) spectrometry has been successfully used for soil attribute prediction. However, recent studies have shown that accurate predictions may vary according to soil type and environmental conditions, motivating investigations in different biomes. Hence, this work attempted to accurately predict soil pH, sum of bases (SB), cation exchange capacity (CEC) at pH 7.0 and base saturation (BS) using pXRF-obtained data with high variability and robust prediction models in the Brazilian Coastal Plains biome. A total of 285 soil samples were collected to generate prediction models for A (n = 123), B (n = 162) and A+B (n = 285) horizons through stepwise multiple linear regression, support vector machine with linear kernel (SVM) and random forest. Data were divided into calibration (75%) and validation (25%) sets. Accuracy of the predictions was assessed by coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and residual prediction deviation (RPD). The A+B horizons dataset had optimal performance, especially for SB predictions using SVM, achieving R2 = 0.82, RMSE = 1.02 cmolc dm–3, MAE = 1.17 cmolc dm–3 and RPD = 2.33. The most important predictor variable was Ca. Predictions using pXRF data were accurate especially for SB. Limitations of the predictions caused by soil classes and environmental conditions should be further investigated in other regions.

Additional keywords: modelling, soil analysis, soil fertility, tropical soils.


References

Andrade R, Faria WM, Silva SHG, Chakraborty S, Weindorf D, Mesquita LF, Guilherme LRG, Curi N (2020a) Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains. Geoderma 357, 113960
Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains.Crossref | GoogleScholarGoogle Scholar |

Andrade R, Silva SHG, Weindorf D, Chakraborty S, Faria WM, Mesquita LF, Guilherme LRG, Curi N (2020b) Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma 357, 113957
Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains.Crossref | GoogleScholarGoogle Scholar |

Benedet L, Faria WM, Silva SHG, Mancini M, Demattê AM, Guilherme LRG, Curi N (2020) Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy. Geoderma 376, 114553
Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy.Crossref | GoogleScholarGoogle Scholar |

Breiman L (2001) Random forests. Machine Learning 45, 5–32.
Random forests.Crossref | GoogleScholarGoogle Scholar |

Carvalho Filho A, Curi N, Fonseca S (2013) ‘Avaliação informatizada e validada da aptidão silvicultural das terras dos tabuleiros costeiros Brasileiros para Eucalipto.’ (Lavras, MG).

Chakraborty S, Weindorf DC, Deb S, Li B, Paul S, Choudhury A, Ray DP (2017) Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 289, 72–81.
Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy.Crossref | GoogleScholarGoogle Scholar |

Chakraborty S, Li B, Weindorf DC, Deb S, Acree AP, Panda P (2019) Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India. Geoderma 338, 5–13.
Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India.Crossref | GoogleScholarGoogle Scholar |

Chang C, Laird DA, Mausbach MJ, Hurburgh CRJ (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Science Society of America Journal 65, 480–490.
Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties.Crossref | GoogleScholarGoogle Scholar |

Clark LJ, Axley JH (1955) Molybdenum determination of soils and rocks with dithiol. Analytical Chemistry 27, 2000–2003.
Molybdenum determination of soils and rocks with dithiol.Crossref | GoogleScholarGoogle Scholar |

Corrêa MM, Ker JC, Barrón V, Fontes MPF, Torrent J, Curi N (2008a) Characterizing iron oxides from coastal and central plain soils. Revista Brasileira de Ciência do Solo 32, 1017–1031.
Characterizing iron oxides from coastal and central plain soils.Crossref | GoogleScholarGoogle Scholar |

Corrêa MM, Ker JC, Barrón V, Torrent J, Fontes MPF, Curi N (2008b) Crystallographic properties of kaolinite soils from coastal tablelands, the Amazon and the great bay ‘Reconcavo Baiano’. Revista Brasileira de Ciência do Solo 32, 1857–1872.
Crystallographic properties of kaolinite soils from coastal tablelands, the Amazon and the great bay ‘Reconcavo Baiano’.Crossref | GoogleScholarGoogle Scholar |

Cortez P (2016) rminer: data mining classification and regression methods. R package version 1.4.2. Available at https://CRAN.R-project.org/package=rminer/ [verified 23 August 2018].

Costa YT, Ribeiro BT, Curi N, de Oliveira GC, Guilherme LRG (2019) Organic matter removal on oxide determination in Oxisols via portable X-ray fluorescence. Communications in Soil Science and Plant Analysis 50, 673–681.
Organic matter removal on oxide determination in Oxisols via portable X-ray fluorescence.Crossref | GoogleScholarGoogle Scholar |

Curi N, Ker JC (2004) ‘Levantamento pedológico de áreas da Aracruz Celulose S.A. nos estados do Espírito Santo, Bahia e Minas Gerais, e sua interpretação para o cultivo do eucalipto e para o ambiente em geral.’ (UFV: Lavras, MG; Viçosa, MG).

Dijair TSB, Silva FM, Teixeira AFS, Silva SHG, Guilherme LRG, Curi N (2020) Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciência e Agrotecnologia 44, e002420
Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry.Crossref | GoogleScholarGoogle Scholar |

Duarte MN, Curi N, Pérez DV, Kämpf N, Claessen MEC (2000) Mineralogia, química e micromorfologia de solos de uma microbacia nos tabuleiros costeiros do Espírito Santo. Pesquisa Agropecuária Brasileira 35, 1237–1250.
Mineralogia, química e micromorfologia de solos de uma microbacia nos tabuleiros costeiros do Espírito Santo.Crossref | GoogleScholarGoogle Scholar |

Fliermans CB, Brock TD (1973) Assay of elemental sulfur in soil. Soil Science 115, 120–122.
Assay of elemental sulfur in soil.Crossref | GoogleScholarGoogle Scholar |

Gomes JBV, Araújo Filho JC, Vidal-Torrado P, Cooper M, Silva EA, Curi N (2017) Cemented horizons and hardpans in the coastal tablelands of northeastern Brazil. Revista Brasileira de Ciência do Solo 41, 41
Cemented horizons and hardpans in the coastal tablelands of northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

González S, Herrera F, García S (2015) Monotonic random forest with an ensemble pruning mechanism based on the degree of monotonicity. New Generation Computing 33, 367–388.
Monotonic random forest with an ensemble pruning mechanism based on the degree of monotonicity.Crossref | GoogleScholarGoogle Scholar |

Hu B, Chen S, Hu J, Xia F, Xu J, Li Y, Shi Z (2017) Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS One 12, e0172438
Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.Crossref | GoogleScholarGoogle Scholar | 29267349PubMed |

Jang M (2010) Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites. Environmental Geochemistry and Health 32, 207–216.
Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites.Crossref | GoogleScholarGoogle Scholar | 19768558PubMed |

Karatzoglou A, Smola A, Hornik K (2008) Kernlab: kernel-based machinelearning lab. Available at: https://cran.r-project.org/web/packages/kernlab/index.html [verified 9 August 2020].

Ker JC, Schaefer CEGR, Romero RE, Corrêa MM (2017) Solos dos Tabuleiros Costeiros. In ‘Pedologia - Solos Dos Biomas Brasileiros.’ (Eds N Curi, JC Ker, RF Novais, P Vidal-Torrado, CEGR Schaefer) pp. 467–492. (Sociedade Brasileira de Ciência do Solo: Viçosa, MG)

Khaledian Y, Brevik EC, Pereira P, Cerdà A, Fattah MA, Tazikeh H (2017) Modeling soil cation exchange capacity in multiple countries. Catena 158, 194–200.
Modeling soil cation exchange capacity in multiple countries.Crossref | GoogleScholarGoogle Scholar |

Kuang B, Mahmood HS, Quraishi MZ, Hoogmoed WB, Mouazen AM, van Henten EJ (2012) Sensing soil properties in the laboratory, in situ, and on-line. A review. Advances in Agronomy114 15522310.1016/B978-0-12-394275-3.00003-1

Kuhn M (2008) Building predictive models in R using the caret package. Journal of Statistical Software 28, 1–26.
Building predictive models in R using the caret package.Crossref | GoogleScholarGoogle Scholar |

Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2, 18–22.

Lima HV, Silva AP, Jacomine PTK, Romero RE, Libardi PL (2004) Identificação e caracterização de solos coesos no estado do Ceará. Revista Brasileira de Ciência do Solo 28, 467–476.
Identificação e caracterização de solos coesos no estado do Ceará.Crossref | GoogleScholarGoogle Scholar |

Lima Neto JA, Ribeiro MR, Corrêa MM, Souza-Júnior VS, Araújo Filho JC, Lima JFWF (2010) Atributos químicos, mineralógicos e micromorfológicos de horizontes coesos de latossolos e argissolos dos tabuleiros costeiros do estado de Alagoas. Revista Brasileira de Ciência do Solo 34, 473–486.
Atributos químicos, mineralógicos e micromorfológicos de horizontes coesos de latossolos e argissolos dos tabuleiros costeiros do estado de Alagoas.Crossref | GoogleScholarGoogle Scholar |

Lopes AS, Guilherme LRG (2016) A career perspective on soil management in the Cerrado Region of Brazil. Advances in Agronomy 137, 1–72.
A career perspective on soil management in the Cerrado Region of Brazil.Crossref | GoogleScholarGoogle Scholar |

Mancini M, Weindorf DC, Chakraborty S, Silva SHG, Teixeira AFS, Guilherme LRG, Curi N (2019) Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. Geoderma 337, 718–728.
Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar |

Mancini M, Silva SHG, Teixeira AFS, Guilherme LRG, Curi N (2020) Soil parent material prediction for Brazil via proximal soil sensing. Geoderma 22, e00310
Soil parent material prediction for Brazil via proximal soil sensing.Crossref | GoogleScholarGoogle Scholar |

Mohamed ES, Saleh AM, Belal AB, Gad AA (2018) Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Sciences 21, 1–14.
Application of near-infrared reflectance for quantitative assessment of soil properties.Crossref | GoogleScholarGoogle Scholar |

Moreau AMSDS, Ker JC, Costa LM, Gomes FH (2006) Caracterização de solos de duas toposseqüências em tabuleiros costeiros do Sul da Bahia. Revista Brasileira de Ciência do Solo 30, 1007–1019.
Caracterização de solos de duas toposseqüências em tabuleiros costeiros do Sul da Bahia.Crossref | GoogleScholarGoogle Scholar |

Nawar S, Delbecque N, Declercq Y, Smedt P, Finke P, Verdoodt A, Van Meirvenne M, Mouazen AM (2019) Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry? Geoderma 350, 29–39.
Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry?Crossref | GoogleScholarGoogle Scholar |

O’Rourke SM, Minasny B, Holden NM, McBratney AB (2016a) Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry. Soil Science Society of America Journal 80, 888
Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry.Crossref | GoogleScholarGoogle Scholar |

O’Rourke SM, Stockmann U, Holden NM, McBratney AB, Minasny B (2016b) An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma 279, 31–44.
An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties.Crossref | GoogleScholarGoogle Scholar |

Pearson D, Chakraborty S, Duda B, Li B, Weindorf DC, Deb S, Brevik E, Ray DP (2017) Water analysis via portable X-ray fluorescence spectrometry. Journal of Hydrology 544, 172–179.
Water analysis via portable X-ray fluorescence spectrometry.Crossref | GoogleScholarGoogle Scholar |

Pelegrino MHP, Weindorf DC, Silva SHG, Menezes MD, Poggere GC, Guilherme LRG, Curi N (2019) Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils. Precision Agriculture 20, 746–766.
Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at https://www.r-project.org [verified 9 August 2020].

Rawal A, Chakraborty S, Li B, Lewis K, Godoy M, Paulette L, Weindorf DC (2019) Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma 338, 375–382.
Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer.Crossref | GoogleScholarGoogle Scholar |

Resende M, Curi N, Ker JC, Rezende SB (2011) ‘Mineralogy of Brazilian soils: interpretation and applications.’ (Editora UFLA: Lavras)

Resende M, Curi N, Rezende SB, Corrêa GF, Ker JC (2014) ‘Pedologia: base para distinção de ambientes.’ 6th edn. (Editora UFLA: Lavras)

Resende M, Curi N, Poggere GC, Barbosa JZ, Pozza AAA (2019) ‘Pedologia, fertilidade, água e planta: inter-relações e aplicações.’ (Editora UFLA: Lavras)

Ribeiro BT, Silva SHG, Silva EA, Guilherme LRG (2017) Portable X-ray fluorescence (pXRF) applications in tropical soil science. Ciência e Agrotecnologia 41, 245–254.
Portable X-ray fluorescence (pXRF) applications in tropical soil science.Crossref | GoogleScholarGoogle Scholar |

Ribeiro BT, Weindorf DC, Silva BM, Tassinari D, Amarante LC, Curi N, Guilherme LRG (2018) The influence of soil moisture on oxide determination in tropical soils via portable X-ray fluorescence. Soil Science Society of America Journal 82, 632
The influence of soil moisture on oxide determination in tropical soils via portable X-ray fluorescence.Crossref | GoogleScholarGoogle Scholar |

Sarkhot DV, Grunwald S, Ge Y, Morgan CLS (2011) Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy. Geoderma 164, 22–32.
Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy.Crossref | GoogleScholarGoogle Scholar |

Sharma A, Weindorf DC, Man T, Aldabaa AAA, Chakraborty S (2014) Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232–234, 141–147.
Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH).Crossref | GoogleScholarGoogle Scholar |

Sharma A, Weindorf DC, Wang DD, Chakraborty S (2015) Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 239–240, 130–134.
Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC).Crossref | GoogleScholarGoogle Scholar |

Silva SHG, Poggere GC, Menezes MD, Carvalho GS, Guilherme LRG, Curi N (2016) Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols). Remote Sensing 8, 614–635.
Proximal sensing and digital terrain models applied to digital soil mapping and modeling of Brazilian Latosols (Oxisols).Crossref | GoogleScholarGoogle Scholar |

Silva SHG, Teixeira AFS, Menezes MD, Guilherme LRG, Moreira FMS, Curi N (2017) Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF). Ciência e Agrotecnologia 41, 648–664.
Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF).Crossref | GoogleScholarGoogle Scholar |

Silva SHG, Hartemink AE, Teixeira AFS, Inda AV, Guilherme LRG, Curi N (2018) Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado. Applied Clay Science 162, 27–37.
Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar |

Silva FM, Weindorf DC, Silva SHG, Silva EA, Ribeiro BT, Guilherme LRG, Curi N (2019) Tropical soil toposequence characterization via pXRF spectrometry. Soil Science Society of America Journal 83, 1153–1166.
Tropical soil toposequence characterization via pXRF spectrometry.Crossref | GoogleScholarGoogle Scholar |

Silva SHG, Weindorf DC, Pinto LC, Faria WM, Acerbi FW, Gomide LR, Mello JM, Pádua AL, Souza IA, Teixeira AFS, Guilherme LRG, Curi N (2020) Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach. Geoderma 362,
Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach.Crossref | GoogleScholarGoogle Scholar |

Siqueira JDP, Lisboa RS, Ferreira AM, Souza MFR, Araújo E, Lisbão Júnior L, Siqueira MM (2004) Estudo ambiental para os programas de fomanto florestal da Aracruz Celulose S.A. e extensão florestal do Governo do Estado do Espírito Santo. Floresta 34, 3–67.
Estudo ambiental para os programas de fomanto florestal da Aracruz Celulose S.A. e extensão florestal do Governo do Estado do Espírito Santo.Crossref | GoogleScholarGoogle Scholar |

Soil Survey Staff (2014) ‘Keys to soil taxonomy.’ (USDA: Washington, DC)

Soltanpour PN, Johnson GW, Workman SM, Jones BJ, Miller RO (1996) Inductively coupled plasma emission spectrometry and inductively coupled plasma-mass spectrometry. ‘Methods of soil analysis. Part 3. Chemical methods.’ (Eds DL Sparks, AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Sumner) pp. 91–139. (ASA, CSSA, SSSA)10.2136/ sssabookser5.3.c5

Souza E, Fernandes Filho EI, Schaefer CEGR, Batjes NH, Santos GR, Pontes LM (2016) Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Scientia Agrícola 73, 525–534.
Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin.Crossref | GoogleScholarGoogle Scholar |

Tavares TR, Molin JP, Nunes LC, Alves EEN, Melquiades FL, Carvalho HWP, Mouazen AM (2020) Effect of x-ray tube configuration on measurement of key soil fertility attributes with XRF. Remote Sensing 12, 963–983.
Effect of x-ray tube configuration on measurement of key soil fertility attributes with XRF.Crossref | GoogleScholarGoogle Scholar |

Teixeira PC, Donagema GK, Fontana A, Teixeira WG (2017) ‘Manual de métodos de análise do solo.’ (Embrapa: Brasília)

Teixeira AFS, Weindorf DC, Silva SHG, Guilherme LRG, Curi N (2018) Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land use. Ciência e Agrotecnologia 42, 501–512.
Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land use.Crossref | GoogleScholarGoogle Scholar |

Teixeira AFS, Pelegrino MHP, Faria WM, Silva SHG, Gonçalves MGM, Acerbi Júnior FW, Gomide LR, Pádua Júnior AL, Souza IA, Chakraborty S, Weindorf DC, Guilherme LRG, Curi N (2020) Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry. Geoderma 361, 114132
Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry.Crossref | GoogleScholarGoogle Scholar |

Towett EK, Shepherd KD, Lee Drake B (2016) Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters. X-Ray Spectrometry 45, 117–124.
Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters.Crossref | GoogleScholarGoogle Scholar |

Valadares JMA, Bataglia OC, Furlani PR (1974) Estudo de materiais calcários usados como corretivo do solo no Estado de São Paulo. IQ - Determinação de Mo, Co, Cu, Zn, Mn e Fe. Bragantia 33, 147–152.
Estudo de materiais calcários usados como corretivo do solo no Estado de São Paulo. IQ - Determinação de Mo, Co, Cu, Zn, Mn e Fe.Crossref | GoogleScholarGoogle Scholar |

Vapnik V (1995) ‘The nature of statistical learning theory.’ (Springer-Verlag)

Viscarra Rossel RA, McBratney AB, Minasny B (2010) ‘Proximal soil sensing’. (Springer Science Business Media B.V.: Dordrecht)10.1007/978-90-481-8859-8

Viscarra Rossel RA, Adamchuk VI, Sudduth KA, McKenzie NJ, Lobsey C (2011) Proximal soil sensing. An effective approach for soil measurements in space and time. Advances in Agronomy113 24329110.1016/B978-0-12-386473-4.00010-5

Wan M, Qu M, Hu W, Li W, Zhang C, Cheng H, Huang B (2019) Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals. Process Safety and Environmental Protection
Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals.Crossref | GoogleScholarGoogle Scholar |

Wan M, Hu W, Qu M, Li W, Zhang C, Kang J, Hong Y, Chen Y, Huang B (2020) Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy. Geoderma 363, 114163
Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy.Crossref | GoogleScholarGoogle Scholar |

Wang D, Chakraborty S, Weindorf DC, Li B, Sharma A, Paul S, Ali MN (2015) Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen. Geoderma 243–244, 157–167.
Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen.Crossref | GoogleScholarGoogle Scholar |

Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017). Package “corrplot”. Available at https://cran.r-project.org/web/packages/corrplot/corrplot.pdf [verified 23 January 2020]

Weindorf DC, Chakraborty S (2016) Portable X-ray fluorescence spectrometry analysis of soils. In ‘Methods of soil analysis’. (Ed. D Hirmas) pp. 1–8. (Soil Science Society of America: Madison, WI)

Weindorf DC, Zhu Y, McDaniel P, Valerio M, Lynn L, Michaelson G, Clark M, Ping CL (2012) Characterizing soils via portable X-ray fluorescence spectrometer: 2. Spodic and Albic horizons. Geoderma 189–190, 268–277.
Characterizing soils via portable X-ray fluorescence spectrometer: 2. Spodic and Albic horizons.Crossref | GoogleScholarGoogle Scholar |

Weindorf DC, Herrero J, Castañeda C, Bakr N, Swanhart S (2013) Direct soil gypsum quantification via portable X-ray fluorescence spectrometry. Soil Science Society of America Journal 77, 2071
Direct soil gypsum quantification via portable X-ray fluorescence spectrometry.Crossref | GoogleScholarGoogle Scholar |

Weindorf DC, Bakr N, Zhu Y (2014) Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. Advances in Agronomy128 14510.1016/B978-0-12-802139-2.00001-9

Were K, Bui DT, Dick ØB, Singh BR (2015) A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators 52, 394–403.
A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape.Crossref | GoogleScholarGoogle Scholar |

Xu D, Zhao R, Li S, Chen S, Jiang Q, Zhou L, Shi Z (2019) Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. European Journal of Soil Science 70, 162–173.
Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China.Crossref | GoogleScholarGoogle Scholar |

Zhang Y, Hartemink AE (2020) Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties. European Journal of Soil Science 71, 316–333.
Data fusion of vis-NIR and PXRF spectra to predict soil physical and chemical properties.Crossref | GoogleScholarGoogle Scholar |

Zhu Y, Weindorf DC, Zhang W (2011) Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 167–168, 167–177.
Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture.Crossref | GoogleScholarGoogle Scholar |