Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Local patterns of edaphic mesofauna distribution in the arid Patagonian steppe, Argentina

Rosa M. Manzo https://orcid.org/0000-0001-9010-3027 A C * , Luz M. Manzo B C , Susana Rizzuto A , M. Fernanda Valenzuela A and Pablo A. Martínez D
+ Author Affiliations
- Author Affiliations

A Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB-UNPSJB), Sarmiento 849, CP 9200 Esquel, Chubut, Argentina.

B Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP-UNPSJB), Roca 780, CP 9200 Esquel, Chubut, Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CP C1425FQB Buenos Aires, Argentina.

D Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3350, CP 7600 Mar del Plata, Buenos Aires, Argentina.

* Correspondence to: rosamanzo19@gmail.com

Handling Editor: Patrick Lavelle

Soil Research 59(8) 806-818 https://doi.org/10.1071/SR20094
Submitted: 9 April 2020  Accepted: 13 May 2021   Published: 29 September 2021

© 2021 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Mesofauna represents a major component of soil biological community and play a critical role in maintaining soil quality, as well as a range of ecosystem functions. A split–split plot design was performed with the aim of identifying the main predictors (phytogeographical criteria, cover type and environmental variables) of edaphic community structure under the effect of desertification. The study also aimed to examine the spatial and seasonal distribution of mesofauna community according to phytogeographical criteria (shrubland vs grassland) and cover type (bare vs covered soil) in the north-western Patagonian steppe of Argentina. The relationship between edaphic fauna, environmental variables and site location was investigated using redundancy analysis (RDA), while the main predictors of edaphic community were analysed using generalised linear mixed models (GLMMs). A total of 43 taxa of Oribatida were found in 168 samples. GLMM approaches selected cover type due to its higher effect on mesofauna community. In this sense, cover type was more important than phytogeographical criteria and environmental variables as predictor of mesofauna community. These findings contribute to a better understanding of how the distribution of mesofauna community respond in Patagonia steppe.

Keywords: acari, covered soil, degradation, grassland, microarthropods, Oribatida, predictors, shrubland.


References

Allison LE (1980) ‘Diagnóstico y rehabilitación de suelos salinos y sódicos’. (Editorial Limusa: México)

Arroyo J, Keith AM, Schmidt O, Bolger T (2013) Mite abundance and richness in an Irish survey of soil biodiversity with comments on some newly recorded species. The Irish Naturalists’ Journal 33, 19–27.

Bailey EH (1943) The importance of agitation of the soil suspension with the glass electrode. Soil Science 55, 143–146.
The importance of agitation of the soil suspension with the glass electrode.Crossref | GoogleScholarGoogle Scholar |

Balogh P, Balogh J (1988) ‘The soil mites of the world. Vol. 2. Oribatid mites of the neotropical region I’. (Magnolia Press and Hungarian Natural History Museum: Budapest)

Balogh P, Balogh J (1990) ‘The soil mites of the world. Vol. 3. Oribatid mites of the neotropical region II’. (Magnolia Press and Hungarian Natural History Museum: Budapest)

Balogh J, Balogh P (2002) ‘Identification keys to the oribatid mites of the extra-holarctic regions’. (Well-Press Publishing Limited: Budapest)

Balogh J, Csiszár J (1963) The zoological results of Gy. Topal’s Collecting in South Argentina. 5. Oribatei (Acarina). Annales historico-naturales Musei nationalis Hungarici 55, 463–485.

Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecological Economics 64, 269–285.
Soil biota, ecosystem services and land productivity.Crossref | GoogleScholarGoogle Scholar |

Berg MP (2012) Patterns of biodiversity at fine and small spatial scales. In ‘Soil ecology and ecosystem services’. (Eds DH Wall, RD Bardgett, V Behan-Pelletier, EJ Herrick, TH Jones, K Ritz, J Six, DR Strong, WH Van der Putten) pp. 136–152. (Oxford University Press: Oxford)

Bertiller MB, Bisigato A (1998) Vegetation dynamics under grazing disturbance. The state and transition model for the Patagonian steppes. Ecologia Austral 8, 191–199.

Black HIJ, Parekh NR, Chaplow JS, Monson F, Watkins J, Creamer R, Potter ED, Poskitt JM, Rowland P, Ainsworth G, Hornung M (2003) Assessing soil biodiversity across Great Britain: National trends in the occurrence of heterotrophic bacteria and invertebrates in soil. Journal Environmental Management 67, 255–266.
Assessing soil biodiversity across Great Britain: National trends in the occurrence of heterotrophic bacteria and invertebrates in soil.Crossref | GoogleScholarGoogle Scholar |

Bokhorst S, Berg MP, Wardle DA (2017) Micro-arthropod community responses to ecosystem retrogression in boreal forest. Soil Biology and Biochemistry 110, 79–86.
Micro-arthropod community responses to ecosystem retrogression in boreal forest.Crossref | GoogleScholarGoogle Scholar |

Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragoso C, Freckman DW, Gupta VVSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Soderstrom B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570.

Caruso T, Schaefer I, Monson F, Keith AM (2019) Oribatid mites show how climate and latitudinal gradients in organic matter can drive large‐scale biodiversity patterns of soil communities. Journal of Biogeography 46, 611–620.
Oribatid mites show how climate and latitudinal gradients in organic matter can drive large‐scale biodiversity patterns of soil communities.Crossref | GoogleScholarGoogle Scholar |

Cepeda-Pizarro J, Whitford WG (1990) Microartrópodos edáficos del desierto chihuahuense, al norte de México. Folia Entomológica Mexicana 78, 257–272.

Coleman DC, Crossley DA, Hendrix PF (2004) ‘Fundamentals of soil ecology’, 2nd edn. (Elsevier Academic Press: Amsterdam)

Colmet Daage F, Mazzarino MJ, Lanciotti ML (1993) Características de los suelos volcánicos en el S.O. del Chubut. In ‘Actas XIV Congreso Argentino de la Ciencia del Suelo, Mendoza’. pp. 417–418.

Correa MN (1998) ‘Flora patagónica, parte I’. (Colección Científica del INTA, Instituto Nacional de Tecnología Agropecuaria: Buenos Aires)

Correia MEF, Oliveira LCM (2005) ‘Importância da fauna de solo para a ciclagem de nutrientes. Processos biológicos no sistema solo-planta: ferramentas para uma agricultura sustentável’. pp. 77–99. (Embrapa Informação Tecnológica: Brasília)

Davies BE (1974) Loss on ignition as an estimate of soil organic matter. Soil Science Society of America Journal 38, 150–151.
Loss on ignition as an estimate of soil organic matter.Crossref | GoogleScholarGoogle Scholar |

Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. European Journal of Soil Biology 42, S23–S38.
The values of soil animals for conservation biology.Crossref | GoogleScholarGoogle Scholar |

del Valle HF (1998) Patagonian soils: a regional synthesis. Ecología Austral 8, 103–123.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo YC (2011) ‘InfoStat versión 2011’. (Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Argentina). Available at http://www. infostat.com.ar

Fieldes M, Perrot KW (1966) The nature of allophane in soils. I. Significance of randomness in pedogenesis. New Zealand Journal of Science 9, 622–632.

Filser J (1995) The effect of green manure on the distribution of Collembola in a permanent row crop. Biology and Fertility of Soils 19, 303–308.
The effect of green manure on the distribution of Collembola in a permanent row crop.Crossref | GoogleScholarGoogle Scholar |

Fischer BM, Schatz H, Maraun M (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Experimental and Applied Acarolology 52, 221–237.
Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem.Crossref | GoogleScholarGoogle Scholar |

Franco PJ, Edney EB, McBrayer JF (1979) The distribution and abundance of soil arthropods in the northern Mojave Desert. Journal of Arid Environments 2, 137–149.

Gaitán JJ, López CR, Bran DE (2009) Efectos del pastoreo sobre el suelo y la vegetación de la estepa Patagónica. Ciencia del suelo 2, 261–270.

Gaitán JJ, López CR, Bran D (2011) Vegetation composition and its relationship with the environment in mallines of north Patagonia, Argentina. Wetlands Ecology and Management 19, 121–130.
Vegetation composition and its relationship with the environment in mallines of north Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

George PBL, Keith AM, Creer S, Barrett GL, Lebron I, Emmett BA, Robinson DA, Jones DL (2017) Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biology and Biochemistry 115, 537–546.
Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme.Crossref | GoogleScholarGoogle Scholar |

Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation 17, 831–850.
Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups.Crossref | GoogleScholarGoogle Scholar |

Greene RS, Valentin C, Esteves M (2001) Runoff and erosion processes. In ‘Banded vegetation patterning in arid and semiarid environments’. pp. 52–76, 149 (Springer: New York, NY)

Gulvik ME (2007) Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish Journal of Ecology 55, 415–440.

Hagvar S, Amundsen T (1981) Effects of liming and artificial acid rain on the mite (Acari) fauna in coniferous forest. Oikos 37, 7–20.
Effects of liming and artificial acid rain on the mite (Acari) fauna in coniferous forest.Crossref | GoogleScholarGoogle Scholar |

Hammer M (1958) Investigations on the Oribatid Fauna of the Andes Mountains. I. The Argentine and Bolivia. Biologiske Skrifterudgivetaf Det Kongelige Danske Videnskabernes Selskab 10, 1–262.

Hammer M (1961) Investigations on the Oribatid Fauna of the Andes Mountains. II. Peru. Biologiske Skrifterudgivetaf Det Kongelige Danske Videnskabernes Selskab 13, 1–200.

Hammer M (1962a) Investigations on the oribatid fauna of the Andes Mountains. III. Chile. Biologiske Skrifterudgivetaf Det Kongelige Danske Videnskabernes Selskab 13, 1–96.

Hammer M (1962b) Investigations on the oribatid fauna of the Andes Mountains. IV. Patagonia. Biologiske Skrifterudgivetaf Det Kongelige Danske Videnskabernes Selskab 13, 1–35.

Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo’. Circles 9, 1–68.

Höfer H, Hanagart W, Garcia M, Martius C, Franklin E, Römbke J, Beck L (2001) Struture and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems. European Journal of Soil Biology 37, 229–235.
Struture and function of soil fauna communities in Amazonian anthropogenic and natural ecosystems.Crossref | GoogleScholarGoogle Scholar |

Iturrondobeitia J, Caballero A, Arroyo J (2004) Avances en la utilización de los ácaros Oribátidos como indicadores de las condiciones edáficas. Munibe 21, 70–91.

Janoušková M, Kohout P, Moradi J, Doubková P, Frouz J, Vosolsobě S, Rydlová J (2018) Microarthropods influence the composition of rhizospheric fungal communities by stimulating specific taxa. Soil Biology and Biochemistry 122, 120–130.
Microarthropods influence the composition of rhizospheric fungal communities by stimulating specific taxa.Crossref | GoogleScholarGoogle Scholar |

Jimeno-Calle E (2016) El uso de ácaros (Arachnida: Acari) como bioindicadores: 8 excusas para utilizarlos. In ‘Congreso Latinoamericano de Acarología, Montenegro’.

Kamill BW, Steinberger Y, Whitford WG (1985) Soil microarthropods from the Chihuahuan Desert of New Mexico. The Zoological Society of London 205, 273–286.
Soil microarthropods from the Chihuahuan Desert of New Mexico.Crossref | GoogleScholarGoogle Scholar |

Kay FR, Sobhy HM, Whitford WG (1999) Soil microarthropods as indicators of exposure to environmental stress in Chihuahuan Desert rangelands. Biology and Fertility of Soils 28, 121–128.

Kinnear A (1991) Acarine communities of semi-arid soils from the Eastern Goldfields region of Western Australia. Pedobiologia 35, 273–283.

Krantz GW, Walter DE (2009) ‘A manual of acarology’, 3rd edn. (Texas Tech University Press: Lubbock, TX, USA)

Kun ME (2012) ‘Taxonomía y diversidad de Ácaros Oribátidos en bosques de Ciprés, Coihue y Ñire y su efecto en el crecimiento micelial’. (Universidad Nacional del Comahue, CRUB: Bariloche)

Kun ME (2015) Do oribatid mites enhance fungal growth in Austrocedrus chilensis leaf litter? Systematic and Applied Acarology 20, 171–176.
Do oribatid mites enhance fungal growth in Austrocedrus chilensis leaf litter?Crossref | GoogleScholarGoogle Scholar |

Lavelle P, Spain AV (2001) ‘Soil ecology’. (Kluwer Academic Publishers: Netherlands)

Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. European Journal of Soil Biology 42, S3–S15.
Soil invertebrates and ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Lebrun P, van Straalen NM (1995) Oribatid mites: prospects of their use in ecotoxicology. Experimental and Applied Acarology 19, 361–379.
Oribatid mites: prospects of their use in ecotoxicology.Crossref | GoogleScholarGoogle Scholar |

León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8, 125–144.

Lindberg N, Bengtsson J (2005) Population responses of oribatid mites and collembolans after drought. Applied Soil Ecology 28, 163–174.
Population responses of oribatid mites and collembolans after drought.Crossref | GoogleScholarGoogle Scholar |

Luxton M (1967) The ecology of saltmarsh Acarina. The Journal of Animal Ecology 36, 257–277.
The ecology of saltmarsh Acarina.Crossref | GoogleScholarGoogle Scholar |

Luz RA, Fontes LS, Cardoso SRS, Lima EFB (2013) Diversity of the Arthropod edaphic fauna in preserved and managed with pasture areas in Teresina–Piaui–Brazil. Brazilian Journal of Biology 73, 483–489.
Diversity of the Arthropod edaphic fauna in preserved and managed with pasture areas in Teresina–Piaui–Brazil.Crossref | GoogleScholarGoogle Scholar |

Mackay W, Silva S, Lightfood D, Pagani MI, Whitford WG (1986) Effect of increased soil moisture and reduced soil temperatures on a desert soil arthropod community. American Midlan Naturalist 116, 45–56.
Effect of increased soil moisture and reduced soil temperatures on a desert soil arthropod community.Crossref | GoogleScholarGoogle Scholar |

Manzo RM, Rizzuto S, Ruiz EV, Martínez PA (2019) Oribatid mites (Acari: Oribatida) from the Patagonian steppe, Argentina. Zootaxa 4686, 241–252.
Oribatid mites (Acari: Oribatida) from the Patagonian steppe, Argentina.Crossref | GoogleScholarGoogle Scholar |

Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23, 374–382.

(2011) Stable isotopes revisited: their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry 43, 877–882.
Stable isotopes revisited: their use and limits for oribatid mite trophic ecology.Crossref | GoogleScholarGoogle Scholar |

Maraun M, Caruso T, Hense J, Lehmitz R, Mumladze L, Murvanidze M, Nae I, Schulz J, Seniczak A, Scheu S (2019) Parthenogenetic vs. sexual reproduction in oribatid mite communities. Ecology and Evolution 9, 7324–7332.
Parthenogenetic vs. sexual reproduction in oribatid mite communities.Crossref | GoogleScholarGoogle Scholar | 31380053PubMed |

Martínez PA, Bernava LV, Valenzuela F, Ruiz EV, Rizzuto S (2015) Microartrópodos edáficos de la estepa patagónica. Actas de CONEBIOS 4, 21–22.

Mazzonia E, Vazquez M (2009) Desertification in Patagonia. Developments in Earth. Surface Processes 13, 351–377.
Desertification in Patagonia. Developments in Earth.Crossref | GoogleScholarGoogle Scholar |

Moreno CE (2001) ‘Métodos para medir la biodiversidad’. (M&T – Manuales y Tesis SEA)

Murvanidze M, Mumladze L, Todria N, Salakaia M, Maraun M (2019) Effect of ploughing and pesticide application on oribatid mite communities. International Journal of Acarology 45, 181–188.
Effect of ploughing and pesticide application on oribatid mite communities.Crossref | GoogleScholarGoogle Scholar |

Neher D, Barbercheck M (1998) Diversity and function of soil mesofauna. In ‘Biodiversity in agroecosystems’. (Eds WW Collins, CO Qualset) pp. 27–47. (Lewis Publishers: New York)

Neher DA, Lewins SA, Weichtalld TR, Darby BJ (2009) Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments 73, 672–677.
Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts.Crossref | GoogleScholarGoogle Scholar |

Nielsen UN, Osler GHR, Campbell CD, Burslem D, van der Wal R (2010) The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography 37, 1317–1328.
The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale.Crossref | GoogleScholarGoogle Scholar |

Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida. Chapter 15. In ‘A manual of acarology’, 3rd edn. (Eds GW Krantz, DE Walter) pp. 430–564. (Texas Tech University Press: Lubbock, TX, USA)

Noy-Meir I (1973) Desert ecosystems: environment and producers. Annual Review Ecology and Systematics 4, 25–51.
Desert ecosystems: environment and producers.Crossref | GoogleScholarGoogle Scholar |

Noy-Meir I (1981) Spatial effects in modelling of arid ecosystems. In ‘Arid-Land ecosystems: structure, functioning, and management’. (Eds DW Goodall, RA Perry) pp. 411–432. (Cambridge University Press: Cambridge)

Nunes LAPL, Araújo ASF, Pessoa MMC, Sousa RS, Silva JDC, Matos-Filho CHA (2018) Edaphic fauna in a vegetation gradient in the Sete Cidades National Park. Brazilian Journal of Biology 79, 45–51.
Edaphic fauna in a vegetation gradient in the Sete Cidades National Park.Crossref | GoogleScholarGoogle Scholar |

Paoletti MG, Bressan M, Edwards CA (1996) Soil invertebrates as bioindicators of human disturbance. Critical Reviews in Plant Science 15, 21–62.
Soil invertebrates as bioindicators of human disturbance.Crossref | GoogleScholarGoogle Scholar |

Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems & Environment 105, 323–333.
Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy.Crossref | GoogleScholarGoogle Scholar |

Paruelo JM, Beltrán A, Jobbagy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8, 85–101.

Paruelo JM, Golluscio RA, Jobbágy EG, Canevari M, Aguiar MR, Brown A, Corcuera J (2006) ‘Ecorregión Estepa Patagónica. Situación ambiental en la Estepa Patagónica’. (La situación ambiental Argentina: Buenos Aires)

QGIS Development Team (2018) QGIS geographic information system. Open source geospatial foundation project. Available at http://qgis.osgeo.org

R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Raffaele E, Schlichter T (2000) Efectos de las plantaciones de Pino Ponderosa sobre la heterogeneidad de micrositios en estepas del Noroeste Patagónico. Ecología Austral 10, 151–158.

Roig FA (1998) La vegetación de la Patagonia. In ‘Flora Patagónica’. (Ed MN Correa) pp. 48–166. (INTA: Buenos Aires)

RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston, MA, USA. Available at http://www.rstudio.com/

Rutgers M, Schouten AJ, Bloem J, van Eekeren N, de Goede RGM, Jagersop Akkerhuis GAJM, van der Wal A, Mulder C, Brussaard L, Breure AM (2009) Biological measurements in a nationwide soil monitoring network. European Journal of Soil Science 60, 820–832.
Biological measurements in a nationwide soil monitoring network.Crossref | GoogleScholarGoogle Scholar |

Sala OE, Aguiar MR (1996) Origin, maintenance, and ecosystem effect of vegetation patches in arid lands. In ‘Rangelands in a sustainable biosphere. Proceedings of the fifth international rangeland congress’. (Ed. N West) pp. 29–32. (Society for Range Management: Wichita, KS, USA)

Santorufo L, Van Gestel CAM, Rocco A, Maisto G (2012) Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution 161, 57–63.
Soil invertebrates as bioindicators of urban soil quality.Crossref | GoogleScholarGoogle Scholar | 22230068PubMed |

Santos PF, Whitford WG (1983) Seasonal and spatial variation in the soil microarthropod fauna of the white sands national monument. The Southwestern Naturalist 28, 417–421.
Seasonal and spatial variation in the soil microarthropod fauna of the white sands national monument.Crossref | GoogleScholarGoogle Scholar |

Santos PF, DePree E, Whitford WG (1978) Spatial distribution of litter and microarthropods in a Chihuahuan desert ecosystem. Journal of Arid Environments 1, 41–48.

Scheu S, Schulz E (1996) Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity & Conservation 5, 235–250.

Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Acari: Oribatida): evidence from stable isotope ratios (15 N/14 N). Soil Biology and Biochemistry 36, 1769–1774.
Trophic niche differentiation in soil microarthropods (Acari: Oribatida): evidence from stable isotope ratios (15 N/14 N).Crossref | GoogleScholarGoogle Scholar |

Shimano S (2011) Aoki’s oribatid-based bioindicator systems. Zoosymposia 6, 200–209.
Aoki’s oribatid-based bioindicator systems.Crossref | GoogleScholarGoogle Scholar |

Siepel H (1994) Life-history tactics of soil microarthropods. Biology and Fertility Soils 18, 263–278.
Life-history tactics of soil microarthropods.Crossref | GoogleScholarGoogle Scholar |

Soil Survey Staff (2014) ‘Claves para la Taxonomía de Suelos. Departamento de Agricultura de los Estados Unidos’, Décimo segunda Edición. (Servicio de Conservación de Recursos Naturales)

Soriano A (1956) Aspectos ecológicos y pastoriles de la vegetación patagónica relacionados con su estado y capacidad de recuperación. Revista de Investigaciones Agropecuarias 10, 349–372.

Soriano A, Movia C (1986) Erosión y desertización en la Patagonia. Interciencia 1, 77–83.

Soriano A, Sala OE, Perelman SB (1994) Patch structure and dynamics in a Patagonian arid steppe. Vegetation 111, 127–135.
Patch structure and dynamics in a Patagonian arid steppe.Crossref | GoogleScholarGoogle Scholar |

Steinberger Y (1990) Acarofauna of a Negev desert loes plain. Acarologia 31, 313–319.

Steinberger Y, Wallwork JA (1985) Composition and vertical distribution patterns of the microarthropod fauna in a Negev desert soil. Journal of Zoology 206, 329–339.
Composition and vertical distribution patterns of the microarthropod fauna in a Negev desert soil.Crossref | GoogleScholarGoogle Scholar |

Steinberger Y, Whitford WG (1985) Microarthropods of a Desert Tabosa Grassland (Hilaria mutica) Swale. American Midlan Naturalist 114, 225–234.
Microarthropods of a Desert Tabosa Grassland (Hilaria mutica) Swale.Crossref | GoogleScholarGoogle Scholar |

Ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s Guideto Canoco for Windows: software for canonical community ordination (version 4). (Microcomputer Power: Ithaca, NY, USA)

Travé J, André HM, Bernini F (1996) ‘Les acariens oribates’. (Éditions AGAR & SIALF: Wavre)

Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van derPutten WH, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MV, Bjornlund L, Jørgensen HB, Christensen S, d’Hertefeldt T, Hotes S, Hol WHG, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pizl V, Stray J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology 21, 973–985.

UNEP (1991) UNEP governing council decision 16/22 – desertification. Desertification Control Bulletin 20, 3–5.

van Straalen NM (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology 9, 429–437.
Evaluation of bioindicator systems derived from soil arthropod communities.Crossref | GoogleScholarGoogle Scholar |

Wallwork JA (1988) The soil fauna as bioindicators. In ‘Biologia Ambiental: Actas del Congreso de Biologia Ambiental (II Congreso Mundial Vasco)’. pp. 203–215 (Servicio Editorial, Universidad del País Vasco: Leioa, Spain)

Wasserstrom H, Whitford WG, Steinberger Y (2016) Spatiotemporal variations of soil microarthropod. Pedosphere: An International Journal 26, 451–461.
Spatiotemporal variations of soil microarthropod.Crossref | GoogleScholarGoogle Scholar |

Wei T, Simko V (2016) Corrplot: visualization of a correlation matrix. R package version 0.77. CRAN, Vienna, Austria.

Whitford WG (2002) ‘Ecology of desert systems. Framework’. (Academic Press: New York, NY, USA)

Whitford WG, Freckman DW, Elkins NZ, Parker LW, Parmalee R, Phillips J, Tucker S (1981) Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biology and Biochemistry 13, 417–25.
Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes.Crossref | GoogleScholarGoogle Scholar |

Winter JP, Behan-Pelletier VM (2007) Microarthropods. In ‘Soil sampling and methods of analysis’, 2nd edn. (Eds MR Carter, EG Gregorich) pp. 399–414. (CRC Press and Taylor and Francis Group LLC: Boca Raton, FL, USA)

Wolfinger RD, Chang M (1995) Comparing the SAS and GLM mixed modeling procedures for repeated measures. In ‘SUGI proceedings’. (SAS Institute Inc: Cary, NC, USA)

Wood TG (1971) The distribution and abundance of Folsomides deserticola Wood (Collembola: Isotomidae) and other microarthropods in arid and semiarid soils in Southern Australia lvith a note on nematode populations. Pedobiologia 11, 446–468.

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) GLM and GAM for count data. In ‘Mixed effects models and extensions in ecology with R’. pp. 209–243. (Springer: New York, NY, USA)