Organic carbon and nitrogen contents and their fractions in soils with onion crops in different management systems
Lucas Borges Ferreira A , Arcângelo Loss A E , Lucas Dupont Giumbelli A , Barbara Santos Ventura A , Monique Souza A , Álvaro Luiz Mafra B , Claudinei Kurtz C , Jucinei José Comin A and Gustavo Brunetto DA Federal University of Santa Catarina, Florianópolis SC, Brazil.
B State University of Santa Catarina, Lages SC, Brazil.
C Research and Agricultural Extension Company of Santa Catarina, Ituporanga SC, Brazil.
D Federal University of Santa Maria, Santa Maria RS, Brazil.
E Corresponding author. Email: arcangelo.loss@ufsc.br
Soil Research 56(8) 846-855 https://doi.org/10.1071/SR18167
Submitted: 14 June 2018 Accepted: 9 October 2018 Published: 9 November 2018
Abstract
The use of plant species in rotation or succession of crops can increase C and N contents and their fractions in the soil. The objective of this study was to evaluate the effect of using soil cover crops in succession and rotation with onion crops in different soil management systems on the total organic carbon (TOC), total nitrogen (TN), and C and N fractions in soil aggregates, and bulk soil. The experiment was implemented in April 2007 with eight treatments: succession of onion and maize in a no-tillage system (NTS) (T1); rotation of soil cover crops (winter) and biennial onion in a NTS (T2); rotation of maize, winter grasses, and onion in a NTS (T3); succession of summer legume and annual onion in a NTS (T4); rotation of summer grass, winter grasses, and annual onion in a NTS (T5); succession of summer legume, winter grass, and annual onion in a NTS (T6); succession of maize and onion in a conventional tillage system (CTS) (T7); and succession of intercrops of soil cover crops (summer), and annual onion in a NTS (T8). Undisturbed soil samples were collected in the 0.0–5.0, 5.0–10.0, and 10.0–20.0 cm soil layers in July 2014, and their aggregate (8.0 to 2.0 mm) and bulk soil (<2 mm) fractions were separated to evaluate their TOC, TN, particulate organic carbon and particulate organic nitrogen (OCP and ONP respectively), and mineral-associated organic carbon and mineral-associated organic nitrogen (OCM and ONM respectively). Soil turning due to the CTS in T7 (0.0–5.0 cm) reduced TOC, OCP, OCM, TN, ONP, and ONM, in the soil aggregates and in the bulk soil, when compared with the NTS with the use of soil cover crops in succession or rotation with onion crops (T1–T6 and T8). T6 increased the TOC, TN, OCP, OCM, ONP, and ONM contents in the soil aggregates and bulk soil when compared with the successions with only grasses or only legumes. T1 increased the soil TOC and TN contents in aggregates compared with the same succession in CTS. T8 had higher OCP (0.0–20.0 cm) and ONP (5.0–10.0 cm) contents in aggregates than in the bulk soil. In general, aggregates had higher TOC and OCM contents, and bulk soil had higher TN, OCP, ONP and ONM contents. The main changes resulting from the management systems and soil cover crop combinations used were observed in the particulate fraction, especially in the soil aggregates.
Additional keywords: Allium cepa L., bulk soil, green manure, no-tillage system, soil aggregates, vegetable.
References
Amado TJC, Bayer C, Eltz FLF, Brum ACR (2001) Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental. Revista Brasileira de Ciência do Solo 25, 189–197.| Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental.Crossref | GoogleScholarGoogle Scholar |
ASHS (American Society for Horticultural Science) (2010) Cover crop mulches tested for no-till organic onions. Science Daily. Available at https://www.sciencedaily.com/releases/2010/04/100421102455.htm [verified 16 March 2018].
Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16, 1–42.
| Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar |
Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil & Tillage Research 53, 215–230.
| Relationship of soil organic matter dynamics to physical protection and tillage.Crossref | GoogleScholarGoogle Scholar |
Bartlett MS (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 160, 268–282.
| Properties of sufficiency and statistical tests.Crossref | GoogleScholarGoogle Scholar |
Boddey RM, Jantalia CP, Conceição PC, Zanatta JA, Bayer C, Mielniczuk J, Dieckow J, Santos HP, Denardin JE, Aita C, Giacomini SJ, Alves BJR, Urquiaga S (2010) Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture in southern Brazil. Global Change Biology 16, 784–795.
| Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture in southern Brazil.Crossref | GoogleScholarGoogle Scholar |
Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research 3, 119–129.
| Conservation tillage impacts on soil, crop and the environment.Crossref | GoogleScholarGoogle Scholar |
Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56, 777–783.
| Particulate soil organic-matter changes across a grassland cultivation sequence.Crossref | GoogleScholarGoogle Scholar |
Christopher SF, Lal R (2007) Nitrogen management affects carbon sequestration in North American cropland soils. Critical Reviews in Plant Sciences 26, 45–64.
| Nitrogen management affects carbon sequestration in North American cropland soils.Crossref | GoogleScholarGoogle Scholar |
CQFSRS/SC (Comissão de Química e Fertilidade do Solo) (2004) ‘Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina’, 10th edn (Brazilian Society of Soil Science: Porto Alegre, Brazil)
Doneda A, Aita C, Giacomini SJ, Miola ECC, Giacomini DA, Schirmann J, Gonzatto R (2012) Fitomassa e decomposição de resíduos de plantas de cobertura puras e consorciadas. Revista Brasileira de Ciência do Solo 36, 1714–1723.
| Fitomassa e decomposição de resíduos de plantas de cobertura puras e consorciadas.Crossref | GoogleScholarGoogle Scholar |
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (1997) ‘Manual de métodos de análise de solos.’ (Centro Nacional de Pesquisa do Solo: Rio de Janeiro)
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (2013) ‘Sistema Brasileiro de Classificação de Solos.’ 3rd edn. (Brasília: Embrapa Produção de informação; Rio de Janeiro: Embrapa Solos) 312p.
EPAGRI (Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina) (2013) ‘Sistema de produção para a cebola’, 4th edn (Sistemas de produção, n. 46)
Fageria NK, Baligar VC, Bailey BA (2005) Role of cover crops in improving soil and row crop productivity. Communications in Soil Science and Plant Analysis 36, 2733–2757.
| Role of cover crops in improving soil and row crop productivity.Crossref | GoogleScholarGoogle Scholar |
Gathumbi SM, Cadisch G, Buresh RJ, Giller KE (2003) Subsoil nitrogen capture in mixed legume stands as assessed by deep nitrogen-15 placement. Soil Science Society of America Journal 67, 573–582.
| Subsoil nitrogen capture in mixed legume stands as assessed by deep nitrogen-15 placement.Crossref | GoogleScholarGoogle Scholar |
Giacomini SJ, Aita C, Vendruscolo ERO, Cubilla M, Nicoloso RS, Fries MR (2003) Matéria seca, relação C/N e acúmulo de nitrogênio, fósforo e potássio em mistura de plantas de cobertura de solo. Revista Brasileira de Ciência do Solo 27, 325–334.
| Matéria seca, relação C/N e acúmulo de nitrogênio, fósforo e potássio em mistura de plantas de cobertura de solo.Crossref | GoogleScholarGoogle Scholar |
Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Soil structure and carbon cycling. Australian Journal of Soil Research 32, 1043–1068.
| Soil structure and carbon cycling.Crossref | GoogleScholarGoogle Scholar |
IBGE (Instituto Brasileiro de Geografia e Estatística) (2017) ‘Levantamento Sistemático da Produção Agrícola’. Available at https://ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_[mensal]/Fasciculo/lspa_201708.pdf. [verified 2 October 2018].
Jantalia CP, Santos HP, Denardin JE, Kochhann R, Alves BJR, Urquiaga S, Boddey RM (2003) Influência de rotações de culturas no estoque de carbono e nitrogênio do solo sob plantio direto e preparo convencional. Agronomia 37, 91–97.
Janzen HH, Campbell CA, Gregorich EG, Ellert BH (1998) Soil carbon dynamics in Canadian agroecosystems. In ‘Soil processes and the carbon cycle’. (Eds R Lal, JM Kimble, RF Follett, BA Stewart) pp.57–80. (CRC Press: Boca Raton, FL)
Lilliefors H (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62, 399–402.
| On the Kolmogorov–Smirnov test for normality with mean and variance unknown.Crossref | GoogleScholarGoogle Scholar |
Lima Filho OF, Ambrosano EJ, Rossi F, Carlos JAD (2014) Adubação verde e plantas de cobertura no Brasil: fundamentos e prática. Brasília, DF: Embrapa. 507p.
Loss A, Pereira MG, Perin A, Coutinho FS, Anjos LHC (2012) Particulate organic matter in soil under different management systems in the Brazilian Cerrado. Soil Research 50, 685–693.
| Particulate organic matter in soil under different management systems in the Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar |
Loss A, Costa EM, Pereira MG, Beutler SJ (2014) Agregação, matéria orgânica leve e carbono mineralizável em agregados do solo. Revista de la Facultad de Agronomía 113, 1–8.
Loss A, Basso A, Oliveira BS, Koucher LP, Oliveira RA, Kurtz C, Lovato PE, Curmi P, Brunetto G, Comin JJ (2015) Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola. Revista Brasileira de Ciência do Solo 39, 1212–1224.
| Carbono orgânico total e agregação do solo em sistema de plantio direto agroecológico e convencional de cebola.Crossref | GoogleScholarGoogle Scholar |
Loss A, Schmitz D, Santos E, Kurtz C, Veiga M, Comin JJ (2017) Atributos físicos do solo sob sistemas de plantio direto e preparo convencional em cultivo de cebola. Revista Colombiana de Ciencias Horticolas 11, 105–113.
| Atributos físicos do solo sob sistemas de plantio direto e preparo convencional em cultivo de cebola.Crossref | GoogleScholarGoogle Scholar |
Meurer EJ (2012) ‘Fundamentos de química do solo’, 5th edn (Evangraf: Porto Alegre).
Norman MJT, Pearson CJ, Searle PGE (1995) Pearl millet (Pennisetum glaucum). In ‘The ecology of tropical food crops’. (Eds MJT Norman, CJ Pearson, PGE Searle) pp.164–184. (Cambridge University Press: Cambridge)
Oliveira RA, Brunetto G, Loss A, Gatiboni LC, Kurtz C, Müller V, Lovato PE, Oliveira BS, Souza M, Comin JJ (2016) Cover crops effects on soil chemical properties and onion yield. Revista Brasileira de Ciência do Solo 40, 1–17.
| Cover crops effects on soil chemical properties and onion yield.Crossref | GoogleScholarGoogle Scholar |
Santos NZ, Dieckow J, Bayer C, Molin R, Favaretto N, Pauletti V, Piva JT (2011) Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil & Tillage Research 111, 208–218.
| Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol.Crossref | GoogleScholarGoogle Scholar |
Santos LH, Canton L, Ventura BS, Ferreira GW, Kurtz C, Brunetto G, Comin JJ, Lovato PE, Loss A (2017) Chemical properties in macroaggregates of a Humic Dystrudept cultivated with onion under no-till and conventional tillage systems. Revista Brasileira de Ciência do Solo 41, e0160419
| Chemical properties in macroaggregates of a Humic Dystrudept cultivated with onion under no-till and conventional tillage systems.Crossref | GoogleScholarGoogle Scholar |
Silva AL, Mafra AL, Klauberg Filho O, Kurtz C, Fayad JA (2014) Carbono e nitrogênio microbiano em sistemas de cultivo de cebola em um Cambissolo Húmico. Revista de Ciências Agroveterinárias 13, 142–150.
Sisti CPJ, Santos HP, Kochhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil & Tillage Research 76, 39–58.
| Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil.Crossref | GoogleScholarGoogle Scholar |
Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research 79, 7–31.
| A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics.Crossref | GoogleScholarGoogle Scholar |
Soil Survey Staff (2006) Keys to soil taxonomy. 10th edn. (United States Department of Agriculture–Natural Resources Conservation Service: Washington, DC) 332p.
The Daily Records (2018) The top onion producing countries in the world. Available at https://www.worldatlas.com/articles/the-top-onion-producing-countries-in-the-world.html. [verified 2 April 2018].
Thivierge MN, Angers DAS, Chantigny MH, Seguin P, Vanasse A (2016) Root traits and carbon input in field-grown sweet pearl millet, sweet sorghum, and grain corn. Agronomy Journal 108, 459–471.
| Root traits and carbon input in field-grown sweet pearl millet, sweet sorghum, and grain corn.Crossref | GoogleScholarGoogle Scholar |
Tivet F, Sá JCM, Lal R, Briedis C, Borszowskei PR, Santos JB, Farias A, Eurich G, Hartman DC, Nadolny M, Bouzinac S, Séguy L (2013) Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil & Tillage Research 126, 203–218.
| Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil.Crossref | GoogleScholarGoogle Scholar |
Vezzani FM, Craig A, Meenken E, Gillespie R, Peterson M, Beare MH (2018) The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil & Tillage Research 175, 139–149.
| The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions.Crossref | GoogleScholarGoogle Scholar |
Weaver JE (1926) ‘Root development of field crops.’ (McGraw-Hill, New York) 167 pp.
Winck BR, Vezzani FM, Dieckow J, Favaretto N, Molin R (2014) Carbono e nitrogênio NAS frações granulométricas da matéria orgánica do solo, em sistemas de culturas sob plantio direto. Revista Brasileira de Ciência do Solo 38, 980–989.
| Carbono e nitrogênio NAS frações granulométricas da matéria orgánica do solo, em sistemas de culturas sob plantio direto.Crossref | GoogleScholarGoogle Scholar |
Zhong XL, Li JT, Li XJ, Ye YC, Liu SS, Hallett PD, Ogden MR, Naveed M (2017) Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 285, 323–332.
| Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China.Crossref | GoogleScholarGoogle Scholar |