Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Potassium fertilisation with humic acid coated KCl in a sandy clay loam tropical soil

Ciro A. Rosolem A , Danilo S. Almeida A B , Kassiano F. Rocha A and Gustavo H. M. Bacco A
+ Author Affiliations
- Author Affiliations

A São Paulo State University, College of Agricultural Sciences, Department of Crop Science, Botucatu, 18610-307, Brazil.

B Corresponding author. Email: daniloalmeida01@hotmail.com

Soil Research 56(3) 244-251 https://doi.org/10.1071/SR17214
Submitted: 17 August 2017  Accepted: 21 September 2017   Published: 29 November 2017

Abstract

Loss of potassium (K) by leaching after potassium chloride (KCl) application is common in light-textured, low cation exchangeable capacity (CEC) soils with predominance of 1 : 1 clay minerals, and is aggravated as soil K concentration increases. Coating of KCl with humic acids may be a strategy to avoid loss and supply K over the plant cycle. The objective of this study was to evaluate the response of maize (Zea mays) and soybean (Glycine max) to regular KCl and KCl coated with humic acid, as well as K leaching as affected by application of these fertilisers in single or split application to soils with different K levels. Field experiments with maize and soybean were conducted on soil with very low, low, and medium exchangeable K levels, in Botucatu, Brazil. Soybean and maize grain yields were higher with a single application of coated KCl compared with regular KCl, in soil with very low K level; however, when the rate was split, yields were higher with regular KCl. This shows the importance of fertiliser K release synchronisation as the plant develops, avoiding possible K losses by leaching in low CEC soils. Potassium leaching was observed in soil with medium K level. Potassium chloride coated with humic acids is an adequate source of K in low CEC soils with very low K level when applied in a single application at planting, as opposed to regular KCl that must be split. However, the coated fertiliser is not effective for avoiding K leaching in soils that are medium or high in K.

Additional keywords: leonardite, maize, no-till, potassium leaching, slow release fertiliser, soybean.


References

Al-Zahrani SM (2000) Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers. Industrial & Engineering Chemistry Research 39, 367–371.
Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFWhsbc%3D&md5=730a888cadcf6660504ce21402ab6660CAS |

Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769.
Some aspects of the surface chemistry of carbon blacks and other carbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlyqtrc%3D&md5=4327638407555ed1611e62f2afdf9336CAS |

Broughton PL (1972) Identification of leonardite, a naturally oxidized lignite, by low-angle X-ray scattering method. Journal of Sedimentary Research 42, 356–358.
Identification of leonardite, a naturally oxidized lignite, by low-angle X-ray scattering method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFertLc%3D&md5=09513b0758a5d1ba7676c07002b3d7e7CAS |

Calonego JC, Rosolem CA (2013) Phosphorus and potassium balance in a corn–soybean rotation under no-till and chiseling. Nutrient Cycling in Agroecosystems 96, 123–131.
Phosphorus and potassium balance in a corn–soybean rotation under no-till and chiseling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSgsLfF&md5=f789b4ea3c74647a85653c12e247d88bCAS |

Cantarella H, Raij B, Camargo CEO (1997) Cereais. In ‘Recomendações de adubação e calagem para o Estado de São Paulo (Boletim 100)’. Eds B Raij, H Cantarella, JA Quaggio, AMC Furlani.) pp. 45–71. (Instituto Agronômico/Fundação IAC: Campinas)

Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Science 11, 929–931.
Stage of development descriptions for soybeans, Glycine Max (L.) Merrill.Crossref | GoogleScholarGoogle Scholar |

Fernandes DM, Rossetto CAV, Ishimura I, Rosolem CA (1993) Nutrição da soja e formas de potássio no solo em função de cultivares e adubação potássica. Revista Brasileira de Ciência do Solo 17, 405–410.

Garcia RA, Crusciol CAC, Calonego JC, Rosolem CA (2008) Potassium cycling in a corn-brachiaria cropping system. European Journal of Agronomy 28, 579–585.
Potassium cycling in a corn-brachiaria cropping system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFClt74%3D&md5=c8db71b043d26ce473879d4a6783add3CAS |

Gommers A, Thiry Y, Delvaux B (2005) Rhizospheric mobilization and plant uptake of radiocesium from weathered micas. Journal of Environmental Quality 34, 2167–2173.
Rhizospheric mobilization and plant uptake of radiocesium from weathered micas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cmsr7I&md5=6ea699e18ca91d84589251fefded7ef9CAS |

Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2012) Functions of Macronutrients. In ‘Mineral Nutrition of Higher Plants’. (Ed. P Marschner.) pp. 135–189. (Academic Press: San Diego)

Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America 108, 3465–3472.
Global land use change, economic globalization, and the looming land scarcity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGlu70%3D&md5=5ee83f4834fb9d7b6ca05e5cbc3c7053CAS |

Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P, Morton DC, Rudel TK, Gasparri I, Munger J (2013) Estimating the world’s potentially available cropland using a bottom-up approach. Global Environmental Change 23, 892–901.
Estimating the world’s potentially available cropland using a bottom-up approach.Crossref | GoogleScholarGoogle Scholar |

Lapola DM, Martinelli LA, Peres CA, Ometto JPHB, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG (2014) Pervasive transition of the Brazilian land-use system. Nature Climate Change 4, 27–35.
Pervasive transition of the Brazilian land-use system.Crossref | GoogleScholarGoogle Scholar |

Livens FR (1991) Chemical reactions of metals with humic material. Environmental Pollution 70, 183–208.
Chemical reactions of metals with humic material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1yisb8%3D&md5=b4cc1647c6db715a9046debf87dc93c8CAS |

Malavolta E, Vitti GC, Oliveira AS (1997) ‘Avaliação do estado nutricional das plantas: princípios e aplicações.’ (Potafós: Piracicaba)

Meurer EJ, Inda AV, Jr (2004) Potássio e adubos potássicos. In ‘Fertilidade dos solos e manejo da adubação de culturas.’. Eds CA Bissani, C Gianello, MJ Tedesco, FAO Camargo.) pp. 139–152. (Gênesis: Porto Alegre)

Mielniczuk J, Yamada T, Roberts TL (2005) Manejo conservacionista da adubação potássica. In ‘Potássio na agricultura brasileira’. Eds T Yamada, TL Roberts.) pp. 165–178. (Potafós: Piracicaba)

Oltmans RR, Mallarino AP (2015) Potassium uptake by corn and soybean, recycling to soil, and impact on soil test potassium. Soil Science Society of America Journal 79, 314–327.
Potassium uptake by corn and soybean, recycling to soil, and impact on soil test potassium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVKgsbY%3D&md5=7bc1f30e73c9e6584472d0b39f7bbfe4CAS |

Oosterhuis DM, Howard DD (2008) Evaluation of slow-release nitrogen and potassium fertilizers for cotton production. African Journal of Agricultural Research 3, 68–73.

Raij B, Cantarella H, Quaggio JA, Furlani AMC (1997) ‘Recomendações de adubação e calagem para o Estado de São Paulo (Boletim Técnico, 100).’ (Instituto Agronômico/Fundação IAC: Campinas)

Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) ‘Análise química para avaliação da fertilidade de solos tropicais.’ (Instituto Agronômico: Campinas)

Ritchie, SW, Hanway, JJ (1986) How a corn plant develops. Iowa State University of Science and Technology, Special report No. 48, Ames.

Rodrigues MAC, Buzetti S, Maestrelo PR, Lino ACM, Carvalho M, Filho MT, Andreotti M, Garcia CMdP (2013) Cloreto de potássio revestido em efeito residual no feijoeiro de inverno irrigado na região de cerrado. Semina. Ciências Agrárias 34, 1011–1022.
Cloreto de potássio revestido em efeito residual no feijoeiro de inverno irrigado na região de cerrado.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wls7bO&md5=ef1f9dc0a6b4464f14431bc1273c2b60CAS |

Rodrigues MAC, Buzetti S, Teixeira Filho MCM, Garcia CMP, Andreotti M (2014) Adubação com KCl revestido na cultura do milho no Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental 18, 127–133.
Adubação com KCl revestido na cultura do milho no Cerrado.Crossref | GoogleScholarGoogle Scholar |

Rosolem CA, Nakagawa J (2001) Residual and annual potassic fertilization for soybeans. Nutrient Cycling in Agroecosystems 59, 143–149.
Residual and annual potassic fertilization for soybeans.Crossref | GoogleScholarGoogle Scholar |

Rosolem CA, Steiner F (2017) Effects of soil texture and rates of K input on potassium balance in tropical soil. European Journal of Soil Science 68, 658–666.
Effects of soil texture and rates of K input on potassium balance in tropical soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsV2jsr7J&md5=54b754d1ab6097ccc99f07a362dfe194CAS |

Rosolem CA, Nakagawa J, Machado JR (1984) Adubação potássica da soja em Latossolo Vermelho Escuro fase arenosa. Pesquisa Agropecuária Brasileira 19, 1319–1326.

Rosolem C, Machado J, Ribeiro D (1988) Formas de potássio no solo e nutrição potássica da soja. Revista Brasileira de Ciência do Solo 12, 121–125.

Rosolem CA, Calonego JC, Foloni JSS (2003) Lixiviação de potássio da palha de espécies de cobertura de solo de acordo com a quantidade de chuva aplicada. Revista Brasileira de Ciência do Solo 27, 355–362.
Lixiviação de potássio da palha de espécies de cobertura de solo de acordo com a quantidade de chuva aplicada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVKlu7Y%3D&md5=fb0415bccc0e97efd6236ad55a43c31dCAS |

Rosolem CA, Garcia RA, Foloni JSS, Calonego JC (2006) Lixiviação de potássio no solo de acordo com suas doses aplicadas sobre palha de milheto. Revista Brasileira de Ciência do Solo 30, 813–819.
Lixiviação de potássio no solo de acordo com suas doses aplicadas sobre palha de milheto.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGlsg%3D%3D&md5=5e67275a34c4201c9a460c98e0fb0108CAS |

Rosolem CA, Sgariboldi T, Garcia RA, Calonego JC (2010) Potassium leaching as affected by soil texture and residual fertilization in tropical soils. Communications in Soil Science and Plant Analysis 41, 1934–1943.
Potassium leaching as affected by soil texture and residual fertilization in tropical soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtLrM&md5=418d115c4da7aa2caad8942e6ac5283dCAS |

Sacramento LV, Rosolem CA (1997) Cinética de absorção de potássio e seus ajustes em plantas de soja em função da idade e estado nutricional. Revista Brasileira de Ciência do Solo 21, 213–219.

Sangoi L, Ernani PR, Bianchet P, Vargas VP, Picoli GJ (2009) Efeito de doses de cloreto de potássio sobre a germinação e o crescimento inicial do milho, em solos com texturas contrastantes. Revista Brasileira de Milho e Sorgo 8, 187–197.
Efeito de doses de cloreto de potássio sobre a germinação e o crescimento inicial do milho, em solos com texturas contrastantes.Crossref | GoogleScholarGoogle Scholar |

Selim EM, Mosa AA, El-Ghamry AM (2009) Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agricultural Water Management 96, 1218–1222.
Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions.Crossref | GoogleScholarGoogle Scholar |

Soil Survey Staff (2014) Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service. Washington, DC.

Sparks D, Huang P (1985) Physical chemistry of soil potassium. In ‘Potassium in agriculture’. (Ed. RD Munson.) pp. 201–276. (American Society of Agronomy: Madison)

Trenkel ME (1997) ‘Controlled-release and stabilized fertilizers in agriculture.’ (The International Fertilizer Industry Association: Paris)

Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38.
An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2cXitlGmug%3D%3D&md5=61a7a47ca314e749c71090a848da451bCAS |

Werle R, Garcia RA, Rosolem CA (2008) Lixiviação de potássio em função da textura e da disponibilidade do nutriente no solo. Revista Brasileira de Ciência do Solo 32, 2297–2305.
Lixiviação de potássio em função da textura e da disponibilidade do nutriente no solo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFakurY%3D&md5=a99137c8480295f0fbf4b057ac5a463dCAS |

Yang X, Geng J, Li C, Zhang M, Chen B, Tian X, Zheng W, Liu Z, Wang C (2016) Combined application of polymer coated potassium chloride and urea improved fertilizer use efficiencies, yield and leaf photosynthesis of cotton on saline soil. Field Crops Research 197, 63–73.
Combined application of polymer coated potassium chloride and urea improved fertilizer use efficiencies, yield and leaf photosynthesis of cotton on saline soil.Crossref | GoogleScholarGoogle Scholar |

Zhang M, Nyborg M, Robertson JA, Solberg ED (1998) Coated KCl increases barley K uptake in two Alberta soils in a greenhouse experiment. Canadian Journal of Soil Science 78, 615–617.
Coated KCl increases barley K uptake in two Alberta soils in a greenhouse experiment.Crossref | GoogleScholarGoogle Scholar |