Experimental study of the electrokinetic behaviour of kaolinite–smectite mixtures
M. Ben Salah A B , H. Souli A , P. Dubujet A , M. Hattab C and M. Trabelsi Ayadi BA Université de Lyon, Ecole Nationale d’Ingénieurs de Saint Etienne (ENISE), Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), UM5513, 58 rue Jean Parot, 42023 Saint-Etienne, France.
B Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE), Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia.
C Université de Lorraine, Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Ile du Saulcy, Metz Cedex 1, France.
D Corresponding author. Email: hanene.souli@enise.fr
Soil Research 55(8) 743-749 https://doi.org/10.1071/SR16267
Submitted: 6 October 2016 Accepted: 4 April 2017 Published: 4 May 2017
Abstract
The evolution of the behaviour of kaolinite–smectite mixtures was studied using mechanical and electrokinetic tests. Oedometric tests showed that the compression index of the mixtures increases with increasing smectite percentage and that the curves feature a double slope in the [log σv,e] (where σv is the vertical mechanical stress and e is the void ratio) coordinate system when the percentage of smectite is strictly higher than 25%. Electrokinetic tests show that, of smectite the electrical conductivity and electro-osmotic flow tend towards that of the smectite. Measurements performed after the electrokinetic tests showed that the pH and conductivity are constant when the amount of smectite is lower than 25%. For higher smectite content, acidification of the medium is not totally obtained and the electrical conductivity is higher near the anode because of the slow diffusion of H+ ions in the structure. The tests also highlight that the electro-osmotic permeability is affected by the hydraulic permeability, although the variation in electro-osmotic permeability remains small compared with that of hydraulic permeability.
Additional keywords: electrical conductivity, electro-osmotic flow, pH.
References
Association Française de Normalisation (AFNOR) (1992) AFNOR Standard NF P 94-057. Sols: reconnaissance et éssais – analyse granulométriques des sols – méthode par sedimentation. AFNOR, Paris, France.Association Française de Normalisation (AFNOR) (1993) AFNOR Standard NF P 94-051. Sols: reconnaissance et éssais – détermination des limites d’Atterberg – limite de liquidité à la coupelle – limite de plasticité au Rouleau. AFNOR, Paris, France.
Association Française de Normalisation (AFNOR) (1995) AFNOR Standard NF P94-050. Sols: reconnaissance et éssais – détermination de la teneur en eau pondérale des matériaux – méthode par étuvage. Paris, France.
Association Française de Normalisation (AFNOR) (1998) AFNOR Standard NF P94-068. Sols: reconnaissance et éssais – mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux – détermination de la valeur de bleu de méthylène d’un sol ou d’un matériau rocheux par l’éssai à la tache. Paris, France.
Association Française de Normalisation (AFNOR) (2002) AFNOR NF ISO 10390. Qualité des sols – détermination du pH. Indice de classement. AFNOR, Saint-Denis, France.
Al-Mukhtar M, Belanteur N, Tessier D, Vanapalli SK (1996) The fabric of a clay soil under controlled mechanical and hydraulic stress states. Applied Clay Science 11, 99–115.
| The fabric of a clay soil under controlled mechanical and hydraulic stress states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1erurY%3D&md5=0796f79d1516915d2791b9444d2c2ce3CAS |
Al-Shahrani SS, Roberts EPL (2009) Electrokinetic removal of caesium from kaolin. Journal of Hazardous Materials 122, 91–101.
| Electrokinetic removal of caesium from kaolin.Crossref | GoogleScholarGoogle Scholar |
Altin A, Degirmenci M (2005) Lead(II) removal from natural soils by enhanced electrokinetic remediation. The Science of the Total Environment 337, 1–10.
| Lead(II) removal from natural soils by enhanced electrokinetic remediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFKk&md5=1aa499a2494bd49066b366a8c8e2620dCAS |
Asadi A, Huat BBK, Nahazanan H, Keykhah HA (2013) Theory of electroosmosis in soil. International Journal of Electrochemical Science 8, 1016–1025.
Ben Hassine A, Souli H, Dubujet Ph, Ayari F, Trabelsi-Ayadi M (2016) Kaolinite carbonate mixture fabric evolution after electrokinetic tests. Géotechnique Letters 6, 45–49.
| Kaolinite carbonate mixture fabric evolution after electrokinetic tests.Crossref | GoogleScholarGoogle Scholar |
Casagrande L (1953) ‘Review of past and current work on electroGosmotic stabilization of soils.’ Harvard Soil Mechanics Series no. 45. (Havard University: Cambridge, MA)
Fukue M, Minato T, Horibe H, Taya N (1999) The micro-structures of clay given by resistivity measurements. Engineering Geology 54, 43–53.
| The micro-structures of clay given by resistivity measurements.Crossref | GoogleScholarGoogle Scholar |
Guillot X, Bergaya F, Fleureau JM, Al-Mukhtar M (2001) Influence of stresses and suction on volume change behavior and microscopic properties of a Casmectite. In ‘Proceedings of the International Symposium on Suction, Swelling, Permeability and Structure of Clays’, Shizuoka, Japan. (Eds K Adachi, M Fukue) pp. 69–77 (Taylor & Francis)
Hammad T (2010) Caractérisation d’une argile marine sur chemins triaxial et oedométrique. PhD Thesis, École Centrale Paris, Châtenay-Malabry, France.
Hattab M, Hammad T, Fleureau JM (2015) Internal friction angle variation in a kaolin/montmorillonite clay mix and microstructural identification. Geotechnique 65, 1–11.
| Internal friction angle variation in a kaolin/montmorillonite clay mix and microstructural identification.Crossref | GoogleScholarGoogle Scholar |
Jayasekera S (2004) Electroosmotic and hydraulic flow rates through kaolinite and bentonite clays. Australian Geomechanics 39, 79–86.
Jozja N, Baillif P, Touray JC, Pons CH, Muller F, Burgevin C (2003) Impacts «multiéchelle» d’un échange (Mg,Ca)-Pb et ses conséquences sur l’augmentation de la perméabilité d’une bentonite. Comptes Rendus Geoscience 335, 729–736.
| Impacts «multiéchelle» d’un échange (Mg,Ca)-Pb et ses conséquences sur l’augmentation de la perméabilité d’une bentonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFOq&md5=d64bc11396a4e3840a53fcf0dd6bb780CAS |
Jullien A, Proust Ch, Le Forestier L, Baillif P (2002) Hydro-chmio-mechanical coupling effects on permeability and swelling behaviour of a Ca smectite soaked by Cu solutions. Applied Clay Science 21, 143–153.
| Hydro-chmio-mechanical coupling effects on permeability and swelling behaviour of a Ca smectite soaked by Cu solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVWmur8%3D&md5=461ec65905c9114d9f84079db4b7f5b2CAS |
Kaufhold S, Dohrmann R, Klinkenberg M, Noell U (2015) Electrical conductivity of bentonites. Applied Clay Science 114, 375–385.
| Electrical conductivity of bentonites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOktbfN&md5=8b024d23b6ade931a2092d84ac1b9e39CAS |
Mojid MA, Cho H (2006) Estimating the fully developed diffuse double layer thickness from the bulk electrical conductivity in clay. Applied Clay Science 33, 278–286.
| Estimating the fully developed diffuse double layer thickness from the bulk electrical conductivity in clay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFertbo%3D&md5=3b5077bb20216cd783fdac8297c3d155CAS |
Mojid MA, Wyseure GCL, Rose DA (2003) Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering. Geotechnical and Geological Engineering 21, 243–258.
| Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering.Crossref | GoogleScholarGoogle Scholar |
Mosavat N, Oh E, Chai G (2013) Laboratory assessment of kaolinite and bentonite under chemical electrokinetic treatment. Journal of Civil & Environmental Engineering 3, 1–7.
Nowamooz H, Masrouri F (2010) Influence of suction cycles on the soil fabric of compacted swelling soil. Comptes Rendus Geoscience 342, 901–910.
| Influence of suction cycles on the soil fabric of compacted swelling soil.Crossref | GoogleScholarGoogle Scholar |
Ouhadi VR, Yong RN, Shariatmadari N, Saeidijama S, Goodarzi AR, Safari-Zanjani M (2010) Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials 173, 87–94.
| Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyitb%2FO&md5=c590e94f37768f619d63d38239ffb939CAS |
Reddy KR, Saichek RE, Maturi K, Prasanth A (2002) Effects of soil moisture and heavy metal concentrations on electrokinetic remediation. Indian Geotechnical Journal 32, 258–288.
Saichek RE, Reddy KR (2003) Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 51, 273–287.
| Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVCitLc%3D&md5=653086d86b2324e58ddb17f5f54ff951CAS |
Souli H, Fleureau JM, Trabelsi Ayadi M, Besnard M (2008) Physicochemical analysis of permeability changes in the presence of zinc. Geoderma 145, 1–7.
| Physicochemical analysis of permeability changes in the presence of zinc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlCmtbc%3D&md5=b8615b4d1a070fb69bbb8bc7fdf56107CAS |
Souli H, Fleureau JM, Trabelsi-Ayadi M (2009) Retention and swelling properties of a calcareous soil during leaching by zinc solutions. Chemical Engineering Journal 155, 19–25.
| Retention and swelling properties of a calcareous soil during leaching by zinc solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gmu7zI&md5=39baf64247a8c083f9c017682c316ddcCAS |
Souli H, Fleureau JM, Trabelsi-Ayadi M, Kbir Ariguib N (2010) A mineralogical identification of a Tunisian clayey soil and fabric changes during wetting. Clay Minerals 45, 315–326.
| A mineralogical identification of a Tunisian clayey soil and fabric changes during wetting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12js7vE&md5=a0827664abbc933e388349a0775a5419CAS |
Tabbagh A, Cosenza Ph (2007) Effect of microstructure on the electrical conductivity of clay rich systems. Physics and Chemistry of the Earth 32, 154–160.
| Effect of microstructure on the electrical conductivity of clay rich systems.Crossref | GoogleScholarGoogle Scholar |