Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soil genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semi-arid estuary (Ceará, Brazil)

A. G. B. M. Albuquerque A , T. O. Ferreira B F , G. N. Nóbrega B , R. E. Romero A , V. S. Souza Júnior C , A. J. A. Meireles D and X. L. Otero E
+ Author Affiliations
- Author Affiliations

A Departamento de Ciências do Solo, Universidade Federal do Ceará, UFC, M.B.12168, Fortaleza, Ceará, Brazil.

B Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil.

C Departamento de Agronomia, Universidade Federal Rural de Pernambuco, UFRPE, Recife – Pernambuco, Brazil.

D Departamento de Geografia, Universidade Federal do Ceará, UFC, Fortaleza, Ceará, Brazil.

E Departamento Edafoloxía y Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

F Corresponding author. Email: toferreira@usp.br

Soil Research 52(2) 140-154 https://doi.org/10.1071/SR13179
Submitted: 16 October 2012  Accepted: 22 October 2013   Published: 13 March 2014

Abstract

Wetland soils, especially those under a semi-arid climate, are among the least studied soils in the tropics. The hypersaline tidal flats on the north-eastern Brazilian coast, locally named apicum, are coastal wetland ecosystems in the peripheral portions of semi-arid estuaries. Despite their great ecological importance, they have been highly impacted by anthropogenic activities. Morphological and analytical data of six soil profiles, representative of the different coastal compartments (mangroves, apicum and coastal tablelands) of the north-eastern Brazilian coast, were examined to better understand the pedogenesis of apicum soils. The hypersaline tidal flat soils were classified as Typic Fluvaquents and Typic Sulfaquents with the following main characteristics: predominance of sand fraction (62–77%); presence of high-activity clays (>24 cmolc kg–1 clay); clay fraction comprising kaolinite, illite, smectite and an interstratified smectite/illite; exchangeable complex dominated by Na+ (ESP ≥15%); elevated levels of salinity (electrical conductivity, EC 25–44 dS m–1); alkaline pH values (7.5–9.5). The sandy texture and quartz-dominated composition of the hypersaline, tidal flat soils indicate a pedogenesis associated with the superficial addition of mineral material. This upbuilding process would have lowered the watertable (relatively to the ground level) and decreased the flooding frequency by the tides, favouring salinisation and solonisation processes at the hypersaline tidal flats. Furthermore, the still-existing hydromorphism would have promoted the maintenance of gleisation and sulfidisation. The presence of pyrite on the hyper-saline tidal flat soils further corroborates the formation of apicum soils from/over buried mangroves.

Additional keywords: coastal wetlands, mineralogy, soil genesis.


References

Almeida RA, Andrade Filho JF (1999) A suíte magmática Parapuí—Sobral-CE: Petrologia e posição estratigráfica. Revista de Geologia UFC 12, 5–28.

Álvarez-Rogel J, Carrasco L, Marín CM, Martínez-Sanchez JJ (2007) Soils of a dune coastal salt marsh system in relation to groundwater level, micro-topography and vegetation under a semiarid Mediterranean climate in SE Spain. Catena 69, 111–121.
Soils of a dune coastal salt marsh system in relation to groundwater level, micro-topography and vegetation under a semiarid Mediterranean climate in SE Spain.Crossref | GoogleScholarGoogle Scholar |

AOAC (1970) ‘Official methods of the Association of Agricultural Chemists.’ 11 edn (Association of Official Agricultural Chemists: Washington, DC)

Araújo Jr JMC, Otero XL, Marques AGB, Nóbrega GN, Silva JRF, Ferreira TO (2012) Selective geochemistry of iron in mangrove soils in a semiarid tropical climate effects of the burrowing activity of crabs Ucides cordatus and Uca maracoani. Geo-Marine Letters 32, 289–300.
Selective geochemistry of iron in mangrove soils in a semiarid tropical climate effects of the burrowing activity of crabs Ucides cordatus and Uca maracoani.Crossref | GoogleScholarGoogle Scholar |

Belzile N, Maki S, Chen YW, Goldsack D (1997) Inhibition of pyrite oxidation by surface treatment. The Science of the Total Environment 196, 177–186.
Inhibition of pyrite oxidation by surface treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVSltLk%3D&md5=b31cd10c338cf375a72b29704c43a8bdCAS |

Berner RA (1970) Sedimentary pyrite formation. American Journal of Science 268, 1–23.
Sedimentary pyrite formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXksFyqtQ%3D%3D&md5=fbd666e160a2b00d6e6ea5ee7f8212d1CAS |

Bower CA, Reitemeier RF, Fireman M (1952) Exchangeable cation analysis of saline and alkali soils. Soil Science 73, 251–262.
Exchangeable cation analysis of saline and alkali soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXivFygtg%3D%3D&md5=1d569bf7cd47c9f0540d6194953a7ee2CAS |

BRAZIL (2012) Federal law N°12.727, October 17th Brasília, DF: Diário Oficial da República Federativa do Brasil, 28 maio 2012. Available at: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/Lei/L12727.htm

Chamley H (1989) ‘Clay sedimentology.’ (Springer-Verlag: Berlin)

Chesworth W (2008) ‘Encyclopedia of soil science.’ (Springer: Dordrecht, the Netherlands)

Coelho C, Jr, Schaeffer-Novelli Y (2000) Considerações teóricas e práticas sobre o impacto da carcinocultura nos ecossistemas costeiros brasileiros. In: ‘Mangrove 2000: Sustainable use of estuaries and mangrove: challenge and prospect’ (CD-Rom). (International Society for Mangroves Ecosystem (ISME): Recife, Brazil)

Corrêa MM, Ker JC, Barrón V, Torrent J, Fontes MPF, Curi N (2008) Crystallographic properties of kaolinite soils from coastal tablelands: the Amazon and the great bay “Reconcavo Baiano”. Revista Brasileira de Ciencia do Solo 5, 1857–1872.

Diniz SF, Moreira CA, Corradini FA (2008) Erosive susceptible in low course of Acaraú river-CE. Geociências 3, 355–367.

Ellis S, Atherton JK (2003) Properties and development of soils on reclaimed alluvial sediments of the Humber Estuary, Eastern England. Catena 52, 129–147.
Properties and development of soils on reclaimed alluvial sediments of the Humber Estuary, Eastern England.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1CqtbY%3D&md5=c06aa7930df9b0e5d4378e3c6313947cCAS |

Ferreira TO, Otero XL, Vidal-Torrado P, Macías F (2007) Redox processes in mangrove soils under rhizophora mangle in relation to different environmental conditions. Soil Science Society of America Journal 71, 484–491.
Redox processes in mangrove soils under rhizophora mangle in relation to different environmental conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSqs70%3D&md5=f0a183f0a7df608f8bf97166b110e407CAS |

Ferreira TO, Otero XL, Souza Junior VS, Vidal-Torrado P, Macías F, Firme LP (2010) Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). Journal of Soils and Sediments 10, 995–1006.
Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSis77L&md5=ac2d3e410dc210cc8c2cabf8b515361bCAS |

Folhes MT, Rennó CD, Soares JV (2009) Remote sensing for irrigation water management in the semi arid Northeast of Brazil. Agricultural Water Management 96, 1398–1408.
Remote sensing for irrigation water management in the semi arid Northeast of Brazil.Crossref | GoogleScholarGoogle Scholar |

Forbes JM, Zhang X, Palo S, Russell J, Mlynczak M, Mertens CJ (2008) Tidal variability in the ionospheric dynamo region. Journal of Geophysical Research 113, A02310
Tidal variability in the ionospheric dynamo region.Crossref | GoogleScholarGoogle Scholar |

FUNCEME (2009) ‘A zona costeira do estado do Ceará: compartimentação geoambiental e antropismo.’ (Fundação Cearense de Meteorologia e Recursos Hídricos: Fortaleza, CE, Brazil)

Galvão CC (2002) Mapeamento geológico estrutural da região nordeste de Santana do Acaraú-CE, ênfase a deformação frágil. MSc Thesis, Universidade Federal do Rio Grande do Norte: Natal, RN, Brazil.

Gee GW, Bauder JW (1986) Particle-size analysis. In ‘Methods of soil analysis. Part 1. Physical and mineralogical methods’. 2nd edn. pp. 383–411. (American Society of Agronomy, Soil Science Society of America: Madison, WI, USA)

Giarola NFB, Lima HV, Romero RE, Brinatti AM, Silva AP (2009) Crystallography and Mineralogy of the Clay Fraction of Hardsetting Horizons in Soils of Coastal Tablelands in Brazil. Revista Brasileira de Ciencia do Solo 33, 33–40.
Crystallography and Mineralogy of the Clay Fraction of Hardsetting Horizons in Soils of Coastal Tablelands in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlaisQ%3D%3D&md5=4afdad7efc7c809a2d8393c9118e5aa6CAS |

Gomes HF, Vidal-Torrado P, Macías F, Gherardi B, Otero XL (2007a) Soils under restinga vegetation on the Cardoso Island (SP). I - characterization and classification. Revista Brasileira de Ciencia do Solo 31, 1563–1580.
Soils under restinga vegetation on the Cardoso Island (SP). I - characterization and classification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1eht7c%3D&md5=7ce490485feedb03d78196d534678710CAS |

Gomes HF, Vidal-Torrado P, Macías F, Souza Júnior VS, Otero XL (2007b) Soils under restinga vegetation on the Cardoso Island (SP). II – mineralogy of silt and clay fractions. Revista Brasileira de Ciencia do Solo 31, 1581–1589.
Soils under restinga vegetation on the Cardoso Island (SP). II – mineralogy of silt and clay fractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1ehtL4%3D&md5=f0a8edc6a19b4760e8e5ba391f89ab4eCAS |

Hadlich GM, Ucha JM, de Oliveira TL (2009) Distribuição de apicuns e de manguezais na Baía de Todos os Santos, Bahia, Brasil. Anais do XIV Simpósio Brasileiro de Sensoriamento Remoto v. 1. p. 4607–4614.

Hadlich GM, Celino JJ, Ucha JM (2010) Physical–chemical differentiation between supratidal salt flats, mangroves and hillsides in the Todos os Santos Bay, Northeast Brazil. Geociências 29, 633–641.

Hamdi-Aissa B, Valles V, Aventurier A, Ribolzi O (2004) Soils and brine geochemistry and mineralogy of hyperarid desert playa, Ouargla Basin, Algerian Sahara. Arid Land Research and Management 18, 103–126.
Soils and brine geochemistry and mineralogy of hyperarid desert playa, Ouargla Basin, Algerian Sahara.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFOjtbk%3D&md5=b4b533c664faa32702e51939ca9a2761CAS |

Hesp PA, Maia LP, Claudino-Sales V (2009) The Holocene Barriers of Maranhão, Piauí and Ceará States, Northeastern Brazil. In ‘Geology and Geomorphology of Holocene Coastal Barriers of Brazil’. pp. 325–343. (Springer-Verlag: Berlin, Heidelberg)

Hollins S, Ridd PV (1997) Evaporation over a tropical tidal salt flat. Mangroves and Salt Marshes 1, 95–102.
Evaporation over a tropical tidal salt flat.Crossref | GoogleScholarGoogle Scholar |

Huerta-Díaz MA, Morse JW (1990) A quantitative method for determination of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta 29, 119–144.

Huerta-Díaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta 56, 2681–2702.
Pyritization of trace metals in anoxic marine sediments.Crossref | GoogleScholarGoogle Scholar |

Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Applied Geochemistry 24, 1626–1634.
Iron oxyhydroxide coating of pyrite for acid mine drainage control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgsLjJ&md5=d712bb9a7c4a7ecac99381a4cb50940dCAS |

IBAMA (2005) ‘Diagnóstico da carcinicultura no estado do Ceará.’ (Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis: Brasilia, Distrito Federal)

Jackson ML (1969) ‘Soil chemical analysis (advanced course).’ (Prentice Hall: Englewood Cliffs, NJ)

Jimenez JA, Maia LP, Serra J, Moeia J (1999) Aeolian dune migration along the Ceará coast, north-eastern Brazil. Sedimentology 46, 689–701.
Aeolian dune migration along the Ceará coast, north-eastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Joeckel RM, Ang Clement BJ (2005) Soils, surficial geology, and geomicrobiology of saline-sodic wetlands, North Platte River Valley, Nebraska, USA. Catena 61, 63–101.
Soils, surficial geology, and geomicrobiology of saline-sodic wetlands, North Platte River Valley, Nebraska, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2ksro%3D&md5=349ce502095bd569f1f3e5c0bc52d35cCAS |

Konsten CJM, Adriesse W, Brinkman R (1988) A field laboratory method to determine total potential and actual acidity in acid sulphate soils. In ‘Selected Papers of the Dakar Symposium on Acid Sulphate Soils’. Vol. 44, pp. 106–134..(International Institute for Land Reclamation and Improvement: Wageningen, the Netherlands)

Köppen W, Geiger R (1928) ‘Klimate der erde.’ (Wall-map 150 cm × 200 cm) (Verlag Justus Perthes: Gotha, Germany).

LABOMAR/SEMACE (2005) Mapeamento as unidades geoambientais da zona costeira do Estado do Ceará. Instituto de Ciências do Mar/Superintendência Estadual do Meio Ambiente Programa: Zoneamento Ecológico e Econômico da zona costeira do Ceará, Brasil. Fortaleza, CE, Brazil.

Lahman EJ, Snedaker SC (1987) Structural comparisons of mangrove forest near shrimp ponds in Southern Ecuador. Interciencia 5, 240–243.

Langmuir D (1997) ‘Aqueous environmental geochemistry.’ (Simon & Schuster: New York)

Lebigre JM (2007) Les marais à mangrove et lês tannes. Available at: http://www.futura-sciences.com/magazines/voyage/infos/dossiers/d/geographie-marais-mangrove-tannes-683/

Lima HV, Silva AP, Romero RE, Jacomine PKT (2005) Physical behavior of a gray cohesive Argisol in Ceara State. Revista Brasileira de Ciencia do Solo 29, 33–40.

Lima HV, Silva AP, Santos MC, Cooper M, Romero RE (2006) Micromorphology and image analysis of a hardsetting Ultisol (Argissolo) in the State of Ceará (Brazil). Geoderma 132, 416–426.
Micromorphology and image analysis of a hardsetting Ultisol (Argissolo) in the State of Ceará (Brazil).Crossref | GoogleScholarGoogle Scholar |

Lobato FAO, de Andrade EM, Meireles ACM, Cristomo LA (2008) Seasonality of the irrigated water quality at the Distrito Irrigado Baixo Acaraú, Ceará, Brazil. Revista Ciência Agronômica 1, 167–172.

Lord CJ (1982) A selective and precise method for pyrite determination in sedimentary materials. Journal of Sedimentary Petrology 52, 664–666.
A selective and precise method for pyrite determination in sedimentary materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltF2ktrg%3D&md5=c77819e5b85ac07b19b18a7977369133CAS |

Maia LP, de Lacerda LD, Monteiro LHU, Souza GM (2006) ‘Atlas dos manguezais do Nordeste do Brasil: avaliação das áreas de manguezais dos estados do Piauí, Ceará, Rio Grande do Norte, Paraíba e Pernambuco.’ (SEMACE: Fortaleza, CE, Brazil)

Marchand C, Lallier-Vergès E, Allenbach M (2011) Redox conditions and heavy metals distribution in mangrove forests receiving effluents from shrimp farms (Teremba Bay, New Caledonia). Journal of Soils and Sediments 11, 529–541.
Redox conditions and heavy metals distribution in mangrove forests receiving effluents from shrimp farms (Teremba Bay, New Caledonia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVCmu7g%3D&md5=d5fa4344313fde754bd4e970e6b4cd48CAS |

Marius C (1985) ‘Mangroves du Senegal et de la Gambie: ecologie- pédologie- géochimie, mise en valeur et aménagement.’ (ORSTOM: Paris)

Marques AGB (2010) Characterization and genesis of mangrove, apicum salt flat and coastal tableland of Acaraú (Ceará State) coastal region. MSc Thesis, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Marques AGB, Ferreira TO, Cabral RL, Nóbrega GN, Romero RE, Meireles AJA, Otero XL (2013) Hypersaline tidal flats (Apicum Ecosystems): the weak link in the tropical wetland chains. Environmental Reviews 22, 1–11.
Hypersaline tidal flats (Apicum Ecosystems): the weak link in the tropical wetland chains.Crossref | GoogleScholarGoogle Scholar |

McBride MB (1994) ‘Environmental chemistry of soil.’ (Oxford University Press: New York)

Mehlich A (1953). ‘Determination of P, Ca, Mg, K, Na, and NH4.’ STDP No. 1-53. (Soil Testing Division, Department of Agriculture: Raleigh, NC, USA)

Meireles AJA (2005) Riscos sócio-ambientais ao longo da zona costeira. Available at: http://www.sbpcnet.org.br/livro/57ra/programas/conf_simp/textos/antoniomeireles.htm

Meireles AJA, Raventos JS (2002) A integrated geomorphological model for the coastal plain of Jericoacoara/Ceará. Mercator 1, 79–94.

Meireles AJA, Cassola RS, Tupinambá SV, Queiroz L de S (2007) Environmental impacts promoted by shrimp farm on the coast Ceará, northeastern Brazil. Mercator 6, 83–106.

Meireles AJA, Silva EV, Thiers PRL (2010) Environmental impacts of the activities of shrimp farming in mangrove ecosystem of the Ceará State, Northeastern Brazil. Revista da Gestão Costeira Integrada 2, 1–11.

Metson AJ (1956) ‘Methods of chemical analysis for soil survey samples.’ (New Zealand Soil Bureau: Wellington, New Zealand)

Munsell Color (2000) ‘Munsell soil color chart.’ (Munsell Color: Grand Rapids, MI, USA)

Nascimento S (1993) ‘Estudo da importância do “apicum” para o ecossistema de manguezal. Relatório Técnico Preliminar.’ (Governo do Estado do Sergipe: Aracaju, SE, Brazil)

Nóbrega GN, Ferreira TO, Romero RE, Marques AGB, Otero XL (2013) Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environmental Monitoring and Assessment 185, 7393–7407.
Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents.Crossref | GoogleScholarGoogle Scholar | 23355026PubMed |

Prada-Gamero RM, Vidal-Torrado P, Ferreira TO (2004) Mineralogy and physical chemistry of mangrove soils from Iriri River at the Bertioga Channel (Santos, São Paulo State, Brazil). Revista Brasileira de Ciencia do Solo 28, 233–243.
Mineralogy and physical chemistry of mangrove soils from Iriri River at the Bertioga Channel (Santos, São Paulo State, Brazil).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1aqu7g%3D&md5=6742e6027b82fabde4d8687d3c844612CAS |

Quaggio JA, van Raij B, Mallavolta E (1985) Alternative use of the SMP-buffer solution to determine lime requirement of soils. Communications in Soil Science and Plant Analysis 16, 245–260.
Alternative use of the SMP-buffer solution to determine lime requirement of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlKlsb0%3D&md5=58d810c25a94a53f43c33c2cd1f1124dCAS |

Rhoades JD (1996) Salinity: Electrical conductivity and total dissolved solids. In ‘Methods of soil analysis: Chemical methods. Part 3’. (Ed. DL Spark) (Soil Science Society of America: Madison, WI, USA)

Ridd PV, Stieglitz T (2002) Dry season salinity changes in arid estuaries fringed by mangroves and saltflats. Estuarine, Coastal and Shelf Science 54, 1039–1049.
Dry season salinity changes in arid estuaries fringed by mangroves and saltflats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFartLc%3D&md5=834e072d3f34e32d24cd6430c33c7d05CAS |

Rogers K, Saintilan N, Cahoon D (2005) Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetlands Ecology and Management 13, 587–598.
Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia.Crossref | GoogleScholarGoogle Scholar |

Ruivo MLP, Amaral IG, Faro MPS, Ribeiro ELC, Guedes ALS, Santos MML (2005) Chemical characterization of the organic surface layer and light organic matter in different types of soil in a toposequence, in Algodoal Island, Maiandeua, Pará State, Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 1, 227–234.

Sauermann G, Andrade JS, Maia LP, Costa UMS, Araujo AD, Herrmann HJ (2003) Wind velocity and sand transport on a barchan dune. Geomorphology 54, 245–255.
Wind velocity and sand transport on a barchan dune.Crossref | GoogleScholarGoogle Scholar |

Schaeffer-Novelli Y, Cintrón-Molero G, Soares ML, De-Rosa MMPT (2000) Brazilian mangroves. Aquatic Ecosystem Health & Management 3, 561–570.

Schmidt AJ (2006) Estudo da dinâmica populacional do caranguejo-uçá, Ucides cordatus cordatus e dos efeitos de uma mortalidade em massa desta espécie em manguezais do Sul da Bahia. MSc Thesis, Universidade de São Paulo, São Paulo, SP, Brazil.

Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (2002) ‘Field book for describing and sampling soils, Version 2.0.’ Natural Resources Conservation Service. (National Soil Survey Center: Lincoln, NE, USA)

Schwertmann U (1992) Relations between iron oxides, soil colors and soil formation. In ‘ Soil color’. pp. 51–70. (Soil Science Society of America: Madison, WI, USA)

Soil Survey Staff (2010) ‘Keys to Soil Taxonomy.’ 11th edn (United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC)

Souza-Júnior VS, Vidal-Torrado P, Garcia-Gonzaléz MT, Otero XL, Macías F (2008) Soil mineralogy of mangrove forest from the state of São Paulo, Southeastern Brazil. Soil Science Society of America Journal 72, 848–857.
Soil mineralogy of mangrove forest from the state of São Paulo, Southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Stumm W, Morgan JJ (1996) ‘Aquatic Chemistry. Chemical equilibria and rates in natural waters.’ (Wiley Interscience: New York)

Sucupira PAP, Pinheiro L de S, Rosa M de S (2006) Caracterização morfométrica do médio e baixo curso do rio Acaraú-Ceará-Brasil. Regional Conference on Geomorphology, Goiânia, GO, Brazil. Available at: http://www.labogef.iesa.ufg.br/links/sinageo/articles/059.pdf

Suguio K, Martin L, Bittencourt ACSP, Dominguez JML, Flexor JM, Azevedo AEG (1985) Flutuações do nível relativo do mar durante o Quaternário Superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Revista Brasileira de Geociencias 15, 273–286.

Sullivan LA, Fitzpatrick RW, Bush RT, Burton ED, Shand P, Ward NJ (2010). ‘The classification of acid sulfate soil materials: further modifications.’ Southern Cross GeoScience Technical Report. (Southern Cross University: Lismore, NSW, Australia)

Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In ‘Methods of soil analysis, Part 3’. (Chemical methods. Soil Science Society of America: Madison, WI, USA)

Torrentó C, Cama J, Urmeneta J, Otero N, Soler A (2010) Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chemical Geology 278, 80–91.
Denitrification of groundwater with pyrite and Thiobacillus denitrificans.Crossref | GoogleScholarGoogle Scholar |

Ucha JM, Hadlich GM, Celino JJ (2008) Apicum: transição entre solos de encosta e manguezais. Revista Educação Tecnologia e Cultura 5, 58–63.

van Breeman N, Buurman P (2002) ‘Soil formation.’ 2nd edn.(Kluwer: New York)

Velde B, Church T (1999) Rapid clay transformations in Delaware salt marshes. Applied Geochemistry 14, 559–568.
Rapid clay transformations in Delaware salt marshes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVejur8%3D&md5=1738d7b310f88c5043a4bbe1b81ec8f2CAS |

Vermeulen J, Grotenhuis T, Joziasse J, Rulkens W (2003) Ripening of dredged sediments during temporary upland disposal. A bioremediation technique. Journal of Soils and Sediments 3, 49–59.
Ripening of dredged sediments during temporary upland disposal. A bioremediation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFymtrs%3D&md5=54b6b777c321c8ac17b1493c7b98664aCAS |

Vieillefon J (1969) ‘La pédogénèse dans les mangroves tropicales. Un exemple de chronoséquence.’ (ORSTOM: Paris)

Vieira JM, Romero RE, Ferreira TO, Assis Júnior RNA (2012) Contribution of amorphous material in the genesis of cohesive horizons of Ultisols in Ceara Coastal Plains. Revista Ciência Agronômica 43, 623–632.
Contribution of amorphous material in the genesis of cohesive horizons of Ultisols in Ceara Coastal Plains.Crossref | GoogleScholarGoogle Scholar |

Vilhena MDP, Costa MLD, Berrêdo JF (2010) Continental and marine contributions to formation of mangrove sediments in an eastern Amazonian mudplain: the case of the Marapanim Estuary. Journal of South American Earth Sciences 29, 427–438.
Continental and marine contributions to formation of mangrove sediments in an eastern Amazonian mudplain: the case of the Marapanim Estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCht7o%3D&md5=a7cce2435f01adb0b0d683a36597c51dCAS |

Zack A, Román-Mas A (1988) Hydrology of the Caribbean Island Wetlands. Acta Científica 2, 65–73.

Zenova GM, Oborotov GV, Norovsuren ZH, Fedotova AV, Yakovleva LV (2007) Halophilic and Alkaliphilic Streptomycetes in Salt-Affected Soils. Eurasain Soil Science 40, 1203–1207.
Halophilic and Alkaliphilic Streptomycetes in Salt-Affected Soils.Crossref | GoogleScholarGoogle Scholar |