Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Iron nodules in ferric soils of the Fraser Coast, Australia: relicts of laterisation or features of contemporary weathering and pedogenesis?

S. C. Löhr A B E , M. Grigorescu A C and M. E. Cox A D
+ Author Affiliations
- Author Affiliations

A School of Earth, Environment and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld 4001, Australia.

B School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

C Geological Survey of Queensland.

D National Centre for Groundwater Research and Training.

E Corresponding author. Email: stefan.loehr@adelaide.edu.au

Soil Research 51(2) 77-93 https://doi.org/10.1071/SR12372
Submitted: 20 December 2012  Accepted: 12 March 2013   Published: 10 April 2013

Abstract

The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex.

Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free ‘biomantle’ over a ferric ‘stone line’. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.

Additional keywords: bioturbation, ferric horizoniron nodule, iron oxide, iron pisolith, laterite, maghemite, weathering.


References

Amouric M, Baronnet A, Nahon D, Didier P (1986) Electron microscopic investigations of iron oxyhydroxides and accompanying phases in lateritic iron-crust pisolites. Clays and Clay Minerals 34, 45–52.
Electron microscopic investigations of iron oxyhydroxides and accompanying phases in lateritic iron-crust pisolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsFaqs7o%3D&md5=ed359660667553cdb261b0d1bcc9ace5CAS |

Anand R (2001) Evolution, classification and use of ferruginous regolith materials in gold exploration, Yilgarn Craton, Western Australia. Geochemistry Exploration Environment Analysis 1, 221–236.
Evolution, classification and use of ferruginous regolith materials in gold exploration, Yilgarn Craton, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslOlsLw%3D&md5=055bd5f07d6b289e2aee92682437c997CAS |

Anand RR, Gilkes RJ (1987) The association of maghemite and corundum in Darling Range laterites, Western Australia. Australian Journal of Soil Research 25, 303–311.
The association of maghemite and corundum in Darling Range laterites, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWkug%3D%3D&md5=8096c0c49777de90a0a98a300c7b9e2bCAS |

Anand RR, Paine M (2002) Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Australian Journal of Earth Sciences 49, 3–162.
Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Ogur8%3D&md5=6b69c8b84af5009939fa0808c1b68270CAS |

Barrón V, Torrent J (2002) Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochimica et Cosmochimica Acta 66, 2801–2806.
Evidence for a simple pathway to maghemite in Earth and Mars soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFyms7o%3D&md5=2a842c54921e347de12734d6fbd8d26dCAS |

Blume HP (1968) Zum Mechanismus der Marmorierung und Konkretionsbildung in Stauwasserböden. Zeitschrift für Pflanzenernährung und Bodenkunde 119, 124–134.
Zum Mechanismus der Marmorierung und Konkretionsbildung in Stauwasserböden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksVGhu7w%3D&md5=170628fea59b7780989de4f1888a28ffCAS |

Bourman RP (1993a) Modes of ferricrete genesis – evidence from southeastern Australia. Zeitschrift fur Geomorphologie 37, 77–101.

Bourman RP (1993b) Perennial problems in the study of laterite – a review. Australian Journal of Earth Sciences 40, 387–401.
Perennial problems in the study of laterite – a review.Crossref | GoogleScholarGoogle Scholar |

Breuning-Madsen H, Awadzi TW, Koch CB, Borggaard OK (2007) Characteristics and genesis of pisolitic soil layers in a tropical moist semi-deciduous forest of Ghana. Geoderma 141, 130–138.
Characteristics and genesis of pisolitic soil layers in a tropical moist semi-deciduous forest of Ghana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVSju7w%3D&md5=ac02bd0ab625671e3ae3b7110148ab9fCAS |

Childs CW (1975) Composition of iron-manganese concretions from some New Zealand soils. Geoderma 13, 141–152.
Composition of iron-manganese concretions from some New Zealand soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktFeltb4%3D&md5=b24034cee672160021ba6b65422b5a64CAS |

Coaldrake JE (1961) ‘The ecoystem of the coastal lowlands (“Wallum”) of southern Queensland.’ (CSIRO: Melbourne)

Cornell RM, Schwertmann U (2003) ‘The iron oxides. Structure, properties, reactions, occurences and uses.’ (Wiley-VCH: Weinheim, Germany)

Coventry RJ, Taylor RM, Fitzpatrick RW (1983) Pedological significance of the gravels in some red and grey earths of central North Queensland. Australian Journal of Soil Research 21, 219–240.
Pedological significance of the gravels in some red and grey earths of central North Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXjslCjsQ%3D%3D&md5=51eff575d23791ad91d3e90d7fe5c995CAS |

Cranfield LC (1994) ‘1 : 250000 Geological Series - Explanatory Notes. Maryborough, Queensland. Sheet SG56-6.’ (Geological Survey of Queensland, Department of Minerals and Energy: Brisbane, Qld)

Faniran A (1970) Maghemite in the Sydney duricrusts. The American Mineralogist 55, 925–933.

Fey MV (1981) Hypothesis for the pedogenic yellowing of red soil materials. In ‘Proceedings 10th National Congress Soil Science Society Southern Africa’. Technical Communication 180, Department of Agriculture, Pretoria. pp. 130–136. (IUSS)

Fitzpatrick RW (1988) Iron compounds as indicators of pedogenic processes: Examples from the southern hemisphere. In ‘Iron in soils and clay minerals’. (Eds JW Stucki, BA Goodman, U Schwertmann) pp. 351–396. (D. Reidel Publishing Company: Dordrecht, The Netherlands)

Gasparatos D, Haidouti C, Tarenidis D (2004) Characterization of iron oxides in Fe-rich concretions from an imperfectly-drained Greek soil: a study by selective-dissolution techniques and X-ray diffraction. Archives of Agronomy and Soil Science 50, 485–493.
Characterization of iron oxides in Fe-rich concretions from an imperfectly-drained Greek soil: a study by selective-dissolution techniques and X-ray diffraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFWksrw%3D&md5=8656ff786658477dc5d7519aa3cd5141CAS |

Grogan KL, Gilkes RJ, Lottermoser BG (2003) Maghemite formation in burnt plant litter at East Trinity, North Queensland, Australia. Clays and Clay Minerals 51, 390–396.
Maghemite formation in burnt plant litter at East Trinity, North Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVajsbs%3D&md5=6b9c9ca2311715cd5f71f9e5055f5ee9CAS |

Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International 177, 941–948.
Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVCgs7w%3D&md5=00701532dc1d30998bd096ce77434b60CAS |

Herbillon AJ, Nahon D (1988) Laterites and laterization processes. In ‘Iron in soil and clay minerals’. (Eds JW Stucki, BA Goodman, U Schwertmann) pp. 779–796. (D. Riedel: Dordrecht, The Netherlands)

Huang PM, Wang MK, Kämpf N, Schulze DG (2002) Aluminium hydroxides. In ‘Soil mineralogy with environmental applications’. (Eds JB Dixon, DG Schulze) pp. 261–289. (Soil Science Society of America: Madison, WI)

Hunt PA, Mitchell PB, Paton TR (1977) ‘Laterite profiles’ and ‘lateritic ironstones’ on the Hawkesbury Sandstone, Australia. Geoderma 19, 105–121.
‘Laterite profiles’ and ‘lateritic ironstones’ on the Hawkesbury Sandstone, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXht1Cis7Y%3D&md5=bca74662f5c153c640af9327e25a46a3CAS |

Isbell RF (2002) ‘The Australian Soil Classification.’ (CSIRO Publishing: Melbourne)

IUSS Working Group WRB (2006) ‘World reference base for soil resources 2006.’ World Soil Resources Report No. 103. (FAO: Rome)

Johnson DL (1990) Biomantle evolution and the redistribution of earth materials and artifacts. Soil Science 149, 84–102.
Biomantle evolution and the redistribution of earth materials and artifacts.Crossref | GoogleScholarGoogle Scholar |

Ketterings QM, Bigham JM, Laperche V (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Science Society of America Journal 64, 1108–1117.
Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Cjs7k%3D&md5=1b6d9c5ec37e4958e29c90f1e0a46c7eCAS |

Latrille C, Elsass F, van Oort F, Denaix L (2001) Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France). Geoderma 100, 127–146.
Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpsVGhtw%3D%3D&md5=532b51701fa731ba2adc2b59f0d20640CAS |

Löhr SC, Cox ME (2012) The influence of vegetation and soil type on the speciation of iron in soil water. European Journal of Soil Science 63, 377–388.
The influence of vegetation and soil type on the speciation of iron in soil water.Crossref | GoogleScholarGoogle Scholar |

Milnes AR, Bourman RP, Northcote KH (1985) Field relationships of ferricretes and weathered zones in southern South Australia: a contribution to ‘laterite’ studies in Australia. Australian Journal of Soil Research 23, 441–465.
Field relationships of ferricretes and weathered zones in southern South Australia: a contribution to ‘laterite’ studies in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xjslaksg%3D%3D&md5=a44b32c2d184402d73be1d0f45cb5ca9CAS |

Milnes AR, Bourman RP, Fitzpatrick JW (1987) Petrology and mineralogy of ‘laterites’ in southern and eastern Australia and southern Africa. Chemical Geology 60, 237–250.
Petrology and mineralogy of ‘laterites’ in southern and eastern Australia and southern Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkt1Khsrg%3D&md5=a66f355552d3378a91ba567dcfa30756CAS |

Morris BA, Fletcher IA (1987) Increased solubility of quartz following ferrous-ferric iron reactions. Nature 330, 558–561.
Increased solubility of quartz following ferrous-ferric iron reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFagsQ%3D%3D&md5=08a16906c7803e20823fe56191d5304dCAS |

Paton TR, Humphreys GS, Mitchell PB (1995) ‘Soils. A new global view.’ (Routledge: London)

Ruan H, Gilkes R (1995) Dehydroxylation of aluminous goethite: Unit cell dimensions, crystal size and surface area. Clays and Clay Minerals 43, 196–211.
Dehydroxylation of aluminous goethite: Unit cell dimensions, crystal size and surface area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVGitrg%3D&md5=c9a5b4d9d7a2f59ca9bae845b689ca80CAS |

Schaetzl R, Anderson S (2005) ‘Soils – genesis and geomorphology.’ (Cambridge University Press: Cambridge, UK)

Scheinost AC, Schwertmann U (1999) Color identification of iron oxides and hydroxysulfates – use and limitations. Soil Science Society of America Journal 63, 1463–1471.

Schulz MS, Vivit D, Schulz C, Fitzpatrick J, White A (2010) Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California. Soil Science Society of America Journal 74, 550–564.
Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWruro%3D&md5=43db4f131fc851c424f0c50ab6e046e5CAS |

Schwertmann U, Carlson L (1994) Aluminum influence on iron oxides: XVII. Unit-cell parameters and aluminum substitution of natural goethites. Soil Science Society of America Journal 58, 256–261.
Aluminum influence on iron oxides: XVII. Unit-cell parameters and aluminum substitution of natural goethites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFChs7o%3D&md5=c97cc3c8d24eca907b4ef3149202e039CAS |

Schwertmann U, Fanning DS (1976) Iron-manganese concretions in hydrosequences of soils in loess in Bavaria. Soil Science Society of America Journal 40, 731–738.
Iron-manganese concretions in hydrosequences of soils in loess in Bavaria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlvFGlsrs%3D&md5=23c8ec961a0b58a7bc77b837781f5f1cCAS |

Schwertmann U, Fechter H (1984) The influence of aluminum on iron oxides: XI. Aluminum-substituted maghemite in soils and its formation. Soil Science Society of America Journal 48, 1462–1463.
The influence of aluminum on iron oxides: XI. Aluminum-substituted maghemite in soils and its formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmsFWquw%3D%3D&md5=21bb1cc6c3c8d8ea6a4d50dd8cf03370CAS |

Schwertmann U, Friedl J, Stanjek H, Schulze DG (2000) The effect of Al on Fe oxides. XIX. Formation of Al-substituted hematite from ferrihydrite at 25°C and pH 4 to 7. Clays and Clay Minerals 48, 159–172.
The effect of Al on Fe oxides. XIX. Formation of Al-substituted hematite from ferrihydrite at 25°C and pH 4 to 7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1GnsLw%3D&md5=0c856186c6b4e0ab537cd4df0c5048bbCAS |

Singh B, Gilkes RJ (1995) The natural occurrence of chi-alumina in lateritic pisolites. Clay Minerals 30, 39–44.
The natural occurrence of chi-alumina in lateritic pisolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCjsbk%3D&md5=f74100ef4a383c4455bca510d38aa2dcCAS |

Singh B, Gilkes RJ (1996) Nature and properties of iron rich glaebules and mottles from some south-west Australian soils. Geoderma 71, 95–120.
Nature and properties of iron rich glaebules and mottles from some south-west Australian soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFyqu7o%3D&md5=114c4e7221c283cfa27ae0217729c927CAS |

Tardy Y (1992) Diversity and terminology of lateritic profiles. In ‘Weathering, soils and paleosols’. (Eds IP Martini, W Chesworth) pp. 379–405. (Elsevier: Amsterdam)

Tardy Y (1997) ‘Petrology of laterites and tropical soils.’ (A. A. Balkema: Rotterdam)

Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe-kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. American Journal of Science 285, 865–903.
Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe-kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvFSjt74%3D&md5=6d889948b9411301cf8c76de3db82281CAS |

Taylor G, Eggleton RA (2008) Genesis of pisoliths and of the Weipa Bauxite deposit, northern Australia. Australian Journal of Earth Sciences 55, S87–S103.
Genesis of pisoliths and of the Weipa Bauxite deposit, northern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVKksb4%3D&md5=d96a7502d9a7090daca7dd6890abfc98CAS |

Taylor RM, Schwertmann U (1974) Maghemite in soils and its origin. II. Maghemite syntheses at ambient temperature and pH 7. Clay Minerals 10, 299–310.
Maghemite in soils and its origin. II. Maghemite syntheses at ambient temperature and pH 7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlsFSgurk%3D&md5=83160225911c387d5a6266cd22e0df23CAS |

Tilley D, Eggleton RA (1996) The natural occurrence of eta-alumina (eta-Al2O3) in bauxite. Clays and Clay Minerals 44, 658–664.
The natural occurrence of eta-alumina (eta-Al2O3) in bauxite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVart7Y%3D&md5=25bad9c1f5a0e5e7b6d0ab641948818eCAS |

Tripathi JK, Rajamani V (2007) Geochemistry and origin of ferruginous nodules in weathered granodioritic gneisses, Mysore Plateau, Southern India. Geochimica et Cosmochimica Acta 71, 1674–1688.
Geochemistry and origin of ferruginous nodules in weathered granodioritic gneisses, Mysore Plateau, Southern India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVaqs70%3D&md5=6ae3c84b4e31ef86b0c7c5bc31b71b2dCAS |

Wells MA, Gilkes RJ, Anand RR (1989) The formation of corundum and aluminous hematite by the thermal dehydroxylation of aluminous goethite. Clay Minerals 24, 513–530.
The formation of corundum and aluminous hematite by the thermal dehydroxylation of aluminous goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlKhtg%3D%3D&md5=3e3dd84e853e5dcd642c1bb5f5a2bdc8CAS |

White GN, Dixon JB (1996) Iron and manganese distribution in nodules from a young Texas Vertisol. Soil Science Society of America Journal 60, 1254–1262.
Iron and manganese distribution in nodules from a young Texas Vertisol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktl2qtrg%3D&md5=15da5c4859b66b49530e06736dddf7efCAS |

Widdowson M (2008) Laterite and Ferricrete. In ‘Geochemical sediments and landscapes’. (Eds DJ Nash, SJ McLaren) pp. 46–94. (Wiley-Blackwell: Chichester, UK)

Zhang M, Karathanasis AD (1997) Characterization of iron-manganese concretions in Kentucky alfisols with perched water tables. Clays and Clay Minerals 45, 428–439.
Characterization of iron-manganese concretions in Kentucky alfisols with perched water tables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Oiu7c%3D&md5=0476df7aa95990aece8e19fe010a906aCAS |