Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
REVIEW

Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review

K. L. Page A , D. E. Allen A , R. C. Dalal A C and W. Slattery B
+ Author Affiliations
- Author Affiliations

A Department of Natural Resources and Water, 80 Meiers Rd, Indooroopilly, Qld 4068, Australia.

B Department of Climate Change, Canberra, ACT 2601, Australia.

C Corresponding author. Email: ram.dalal@derm.qld.gov.au

Australian Journal of Soil Research 47(8) 747-762 https://doi.org/10.1071/SR09057
Submitted: 2 April 2009  Accepted: 3 August 2009   Published: 11 December 2009

Abstract

Increases in soil acidification have led to large increases in the application of aglime to Australian agricultural soils. The addition of aglime has the potential to increase greenhouse gas (GHG) emissions due to the release of CO2 during the chemical dissolution of aglime and due to pH-induced changes to soil biological processes. Currently, Australia’s GHG accounting system assumes that all the carbon contained in aglime is released to the atmosphere during dissolution in accordance with the Tier 1 methodology of the IPCC. However, a recent approach by TO West and AC McBride has questioned this assumption, hypothesising that a proportion of the carbon from riverine-transported aglime may be sequestered in seawater. In addition, there is presently no capacity within Australia’s carbon accounting system to quantify changes to GHG emissions from lime-induced changes to soil biological processes. Therefore, the primary objective of this review was to examine the chemical and biological processes occurring during the application of aglime and the subsequent fluxes in CO2, N2O, and CH4 from soil, with particular reference to the Australian environment. Estimates for CO2 emissions from aglime application in Australia using the contrasting methodologies of the IPCC and West and McBride were compared. Using the methodology of the IPCC it was determined that from the aglime applied in Australia in 2002, 0.995 Tg of CO2 would have been emitted, whereas this figure was reduced to 0.659–0.860 Tg of CO2 using the methodology of West and McBride. However, the accuracy of these estimates is currently limited by poor understanding of the manner in which aglime moves within the Australian landscapes. In addition, there are only a very small number of Australian studies that have examined the effect of aglime on GHG emissions due to changes in soil biological processes, limiting the ability of Australian modellers to accurately incorporate these processes within the carbon accounting system.


Acknowledgments

The authors thank the Department of Climate Change for funding provided for this project, Dr Gary Richards for initial ideas and support of the project, and Dr Jeff Baldock for numerous suggestions at the initiation of the project. Contributions to the project by Iain Gibson and Phil Moody are also gratefully acknowledged.


References


ABS (2003) ‘Agricultural Commodities Australia.’ 7127.0. (Australian Bureau of Satistics: Canberra, ACT)

Adams TM, Adams SN (1983) The effects of liming on soil pH on carbon and nitrogen contained in the soil biomass. Journal of Agricultural Science, Cambridge 101, 553–558.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Andersson S, Ingvar Nilsson S (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology & Biochemistry 33, 1181–1191.
CAS | Crossref |
open url image1

Backman JSK, Klemedtsson AK (2003) Increased nitrification in acid coniferous forest soil due to high nitrogen deposition and liming. Scandinavian Journal of Forest Research 18, 514–524.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baker GH, Carter PJ, Barrett VJ (1999) Influence of earthworms, Aporrectodea spp. (Lumbricidae), on lime burial in pasture soils in south-eastern Australia. Australian Journal of Soil Research 37, 831–845.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bakker MR (1999) The effect of lime and gypsum applications on a sessile oak (Quercus petraea (M.) Liebl.) stand at La Croix-Scaille (French Ardennes) II. Fine rot dynamics. Plant and Soil 206, 109–121.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bakker MR, Kerisit R, Verbist K, Nys C (1999) Effects of liming on rhizosphere chemistry and growth of fine roots and of shoots of sessile oak (Quercus petraea). Plant and Soil 217, 243–255.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baldock JA, Aoyama M, Oades JM, Susanto O, Grant CD (1994) Structural amelioration of a South Australian red-brown earth using calcium and organic amendments. Australian Journal of Soil Research 32, 571–594.
CAS | Crossref |
open url image1

Bandibas J, Vermoesen A, De Groot CJ, Van Cleemput O (1994) The effect of different moisture regimes and soil characteristics on nitrous oxide emission and consumption by different soils. Soil Science 58, 106–114. open url image1

Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology & Biochemistry 27, 1517–1527.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Benstead J, King GM (2001) The effect of soil acidification on atmospheric methane uptake by a Maine forest soil. FEMS Microbiology Ecology 34, 207–212.
CAS | PubMed |
open url image1

Bertrand I, Delfosse O, Mary B (2007) Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects. Soil Biology & Biochemistry 39, 276–288.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Billore SK, Numata M, Minami K (1996) Nitrous oxide emission from grassland and forest soils through nitrification. Current Science 70, 1010–1012.
CAS |
open url image1

Borken W, Brumme R (1997) Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes. Soil Use and Management 13, 251–257.
Crossref | GoogleScholarGoogle Scholar | open url image1

Borken W, Grudel S, Beese F (2000) Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide efluxes from a forest soil. Biology and Fertility of Soils 32, 142–148.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Brady NC , Weil RR (2002) ‘The nature and properties of soil.’ (Prentice Hall: Upper Saddle River, NJ)

Bromfield SM, Cumming RW, David DJ, Williams CH (1987) Long-term effects of incorporated lime and topdressed lime on the pH in the surface and subsurface of pasture soils. Australian Journal of Experimental Agriculture 27, 533–538.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bruce RC (1988) Soil acidity and liming. In ‘Understanding soils and soil data’. (Ed. IF Fergus) pp. 87–107. (Australian Society of Soil Science: Brisbane)

Bruce RC (1997) Soil acidification. In ‘Sustainable crop production in the sub-tropics’. (Eds AL Clarke, PB Wylie) pp. 97–111. (Queensland Department of Primary Industries: Brisbane)

Brumme R, Besse F (1992) Effects of liming and nitrogen fertilisation on emissions of CO2 and N2O from a temporate forest. Journal of Geophysical Research 97, 12 851–12 858.
CAS |
open url image1

Butterbach-Bahl K, Gasche R, Willibald G, Papen H (2002) Exchange of N-gases at the Hoglwald forest – a summary. Plant and Soil 240, 117–123.
CAS | Crossref |
open url image1

Butterbach-Bahl K, Papen H (2002) Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant and Soil 240, 77–90.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Caires EF, Correa JCL, Churka S, Barth G, Garbuio FJ (2006) Surface application of lime ameliorates subsoil acidity and improves root growth and yield of wheat in an acid soil under no-till system. Scientia Agricola (Piracicaba, Braz.) 63, 502–509.
CAS |
open url image1

Chaban B, Ng SYM, Jarrell KF (2006) Archaeal habitats – from the extreme to the ordinary. Canadian Journal of Microbiology 52, 73–116.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chagnon M, Pare D, Hebert C, Camire C (2001) Effects of experimental liming on collembolan communities and soil microbial biomass in a southern Quebec sugar maple (Acer saccharum Marsh.) stand. Applied Soil Ecology 17, 81–90.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chan ASK, Parkin TB (2001) Methane oxidation and production activity in soils from natural and agricultural ecosystems. Journal of Environmental Quality 30, 1896–1903.
CAS | PubMed |
open url image1

Chan KY, Conyers MK, Scott BJ (2007) Improved structural stability of an acidic hardsetting soil attributable to lime application. Communications in Soil Science and Plant Analysis 38, 2163–2175.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chan KY, Heenan DP (1999) Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Science Society of America Journal 63, 1841–1844.
CAS |
open url image1

Clough TJ, Kelliher FM, Sherlock RR, Ford CD (2004) Lime and soil moisture effects on nitrous oxide emissions from a urine patch. Soil Science Society of America Journal 68, 1600–1609.
CAS |
open url image1

Clough TJ, Sherlock RR, Kelliher FM (2003) Can liming mitigate N2O fluxes from a urine-amended soil. Australian Journal of Soil Research 41, 439–457.
Crossref | GoogleScholarGoogle Scholar | open url image1

Conyers MK, Mullen CL, Scott BJ, Poile GJ, Braysher BD (2003) Long-term benefits of limestone applications to soil properties and to cereal crop yields in southern and central New South Wales. Australian Journal of Experimental Agriculture 43, 71–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Conyers MK, Scott BJ (1989) The influence of surface incorporated lime on subsurface soil acidity. Australian Journal of Experimental Agriculture 29, 201–207.
Crossref | GoogleScholarGoogle Scholar | open url image1

Coventry DR, Hirth JR, Reeves TG (1992) Interactions of tillage and lime in wheat-subterranean clover roations on an acidic sandy clay loam in southeastern Australia. Soil & Tillage Research 25, 53–65.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cox JW, Pitman A (2001) Chemical concentrations of overland flow and throughflow from pastures on sloping texture-contrast soils. Australian Journal of Agricultural Research 52, 211–220.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Cregan PD , Hirth JR , Conyers MK (1989) Amelioration of soil acidity by liming and other amendments. In ‘Soil acidity and plant growth’. (Ed. AD Robson) pp. 205–264. (Academic Press: Sydney)

Cumming RW (1991) Long-term effects of lime in extensive pasture areas of Australlia. In ‘Plant and soil interactions at low pH’. (Eds RJ Wright, VC Balingar, RP Murrmann) pp. 453–464. (Kluwer Academic Publishers: The Netherlands)

Curtin D, Campbell CA, Jalil A (1998) Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology & Biochemistry 30, 57–64.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil 309, 43–76.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Australian Journal of Soil Research 41, 165–195.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

DCC (2009) ‘Australia’s National Greenhouse Accounts: National Inventory Reports 2007, Vol. 1.’ (Department of Climate Change: Canberra, ACT)

de la Paz M, Gomez-Parra A, Forja J (2007) Inorganic carbon dynamic and air–water CO2 exchange in the Guadalquivir Estuary (SW Iberian Peninsula). Journal of Marine Systems 68, 265–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Derome J (1990–91) Effects of forest liming on the nutrient status of podzolic soils in Finland. Water, Air, and Soil Pollution 54, 337–350.
CAS |
open url image1

Drever JI (1988) ‘The geochemistry of natural waters.’ (Prentice Hall: Upper Saddle River, NJ)

Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology & Biochemistry 25, 321–326.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Evans G (1991) ‘Acid soils in Australia: Issues for Government.’ (Bureau of Rural Resources: Canberra, ACT)

Farquharson R, Baldock J (2008) Concepts in modelling N2O emissions from land use. Plant and Soil 309, 147–167.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Feng K, Yan F, Hutsch BW, Schubert S (2003) Nitrous oxide emission as affected by liming an acidic mineral soil used for arable agriculture. Nutrient Cycling in Agroecosystems 67, 283–292.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fettell NA, Evans CM, Carpenter DJ, Brockwell J (2007) Residual effects from lime application on soil pH, rhizobial population and crop productivity in dryland farming systems of central New South Wales. Australian Journal of Experimental Agriculture 47, 608–619.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fiskell JGA, Calvert DV (1975) Effects of deep tillage, lime incorporation and drainage on chemical properties of spodsol profiles. Soil Science 120, 132–139.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fuentes JP, Bezdicek DF, Flury M, Albrecht S, Smith JL (2006) Microbial activity affected by lime in a long-term no-till soil. Soil & Tillage Research 88, 123–131.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gledinning JS (2000) ‘Australian soil fertility manual.’ (CSIRO Publishing: Collingwood, Vic.)

Goodroad LL, Keeney DR (1984) Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biology & Biochemistry 16, 39–43.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gregory PJ, Tennant D, Hamblin AP, Eastham J (1992) Components of the water balance on duplex soils in Western Australia. Australian Journal of Experimental Agriculture 32, 845–855.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hamilton SK, Kurzman AL, Arango C, Jin L, Robertson GP (2007) Evidence for carbon sequestration by agricultural liming. Global Biogeochemical Cycles 21, GB2021.
Crossref | GoogleScholarGoogle Scholar | open url image1

Haynes RJ, Naidu R (1998) Influence of lime, fertiliser and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems 51, 123–137.
Crossref | GoogleScholarGoogle Scholar | open url image1

Haynes RJ, Swift RS (1988) Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in an acid soil. Biology and Fertility of Soils 6, 153–158.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hélie JF, Hillaire-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River – isotopic and chemical constraint. Chemical Geology 186, 117–138.
Crossref | GoogleScholarGoogle Scholar | open url image1

Helyar KR (1991) The management of acid soils. In ‘Plant–soil interactions at low pH’. (Eds RJ Wright, VC Baligar, RP Murrmann) pp. 365–382. (Kluwer Academic Publishers: The Netherlands)

Hindar A, Wright RF, Nilsen P, Larssen T, Hogberget R (2003) Effects on stream water chemistry and forest vitality after whole-catchment application of dolomite to a forest ecosystem in southern Norway. Forest Ecology and Management 180, 509–525.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hlaváčová E, Rulik M, Cap L, Mach V (2006) Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Archiv fuer Hydrobiologie 165, 339–353.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hopkins DW (1997) Decomposition in a peaty soil improved for pastoral agriculture. Soil Use and Management 13, 104–106.
Crossref | GoogleScholarGoogle Scholar | open url image1

Horsnell LJ (1985) The growth of improved pastures on acid soils. 1. The effect of superphosphate and lime on soil pH and on the establishment and growth of phalaris and lucerne. Australian Journal of Experimental Agriculture 25, 149–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hütsch BW (1998) Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biology and Fertility of Soils 28, 27–35.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hütsch BW (2001) Methane oxidation in non-flooded soils as affected by crop production – invited paper. European Journal of Agronomy 14, 237–260.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land-use, soil-pH and N-fertilisation. Soil Biology & Biochemistry 26, 1613–1622.
Crossref | GoogleScholarGoogle Scholar | open url image1

Iglesias-Rodriguez MD, Armstrong RF, Hood R, Kleypas J (2002) Progress made in study of ocean’s calcium carbonate budget. Eos 83, 365–375.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ignacio Rangel-Castro J, Prosser JI, Scrimgeour CM, Smith P, Ostle N, Ineson P, Meharg A, Killham K (2004) Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology 10, 2100–2108.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ingvar Nilsson S, Andersson S, Valeur I, Persson T, Bergholm J, Wiren A (2001) Influence of dolomite lime on leaching and storage of C, N and S in a Spodosol under Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management 146, 55–73.
Crossref | GoogleScholarGoogle Scholar | open url image1

IPCC (2001) Technical Summary. In ‘Climate Change 2001: The Scientific Basis. Contribution of working group 1 of the Intergovernmental Panel on Climate Change’. (Cambridge University Press: Cambridge, UK)

IPCC (2006) ‘2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4. Agriculture, forestry and other land use.’ (Intergovernmental Panel on Climate Change: Geneva)

Islam A, White RE, Chen D (2006) Nitrification activity in acid soils of north-eastern Victoria, Australia, as affected by liming and phosphorus fertilisation. Australian Journal of Soil Research 44, 739–744.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ (CO2)-C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist 153, 327–334.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Johnson D, Leake JR, Read DJ (2005) Liming and nitrogen fertilisation affects phosphatease activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant and Soil 271, 157–164.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kashmir Klemedtsson Å, Klemedtsson L (1997) Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biology and Fertility of Soils 25, 296–301.
Crossref | GoogleScholarGoogle Scholar | open url image1

Keller JK, Bridgham SD, Chapin CT, Iversen CM (2005) Limited effects of six years of fertilisation on carbon mineralisation dynamics in a Minnesota fen. Soil Biology & Biochemistry 37, 1197–1204.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology & Biochemistry 38, 898–911.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Khalil MI, Van Cleemput O, Rosenani AB, Fauziah CI, Shamshuddin J (2003) Nitrous oxide formation potential of various humid tropic soils of Malaysia: a laboratory study. Nutrient Cycling in Agroecosystems 66, 13–21.
CAS | Crossref |
open url image1

Kiese R, Wochele S, ButterbachBahl K (2008) Site specific and regional estimates of mehtna uptake by tropical rainforest soils in north eastern Australia. Plant and Soil 309, 211–226.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kirkham JM, Rowe BA, Doyle RB (2007) Persistent improvements in the structure and hydraulic conductivity of a Ferrosol due to liming. Australian Journal of Soil Research 45, 218–223.
CAS | Crossref |
open url image1

Klemedtsson L, Kashmir Klemedtsson Å, Moldan F, Weslien P (1997) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biology and Fertility of Soils 25, 290–295.
CAS | Crossref |
open url image1

Koskinen WC, Keeney DR (1982) Effect of pH on the rate of gaseous products of denitirification in a silt loam soil. Soil Science Society of America Journal 46, 1165–1167.
CAS |
open url image1

Kreutzer K (1995) Effects of forest liming on soil processes. Plant and Soil 168–169, 447–470.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li GD, Helyar KR, Conyers MK, Cullis BR, Cregan PD, Fisher RP, Castleman LJC, Poile GJ, Evans CM, Braysher B (2001) Crop responses to lime in long-term pasture-crop rotations in a high rainfall area in south-eastern Australia. Australian Journal of Agricultural Research 52, 329–341.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lorenz K, Preston CM, Feger KH (2001) Long-term effects of liming on microbial biomass and activity and soil organic matter quality (C-13 CPMAS NMR) in organic horizons of Norway spruce forests in Southern Germany. Journal of Plant Nutrition and Soil Science - Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 164, 555–560.
CAS | Crossref |
open url image1

Luo Y , Zhou X (2006) ‘Soil respiration and the environment.’ (Elsevier: USA)

Malhi SS, Harapiak JT, Gill KS, Flore N (2002) Long-term N rates and subsequent lime application effects on macroelements concentration in soil and in bromegrass hay. Journal of Sustainable Agriculture 21, 79–97.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marschner B, Milczynski WA (1991) The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant and Soil 137, 229–236.
CAS | Crossref |
open url image1

McBride MB (1994) ‘Environmental chemistry of soils.’ (Oxford University Press: USA)

McLay CDA, Ritchie GSP, Porter WM, Cruse A (1994) Amelioration of subsurface acidity in sandy soils in low rainfall regions. II.* Changes to soil solution composition following the surface application of gypsum and lime. Australian Journal of Soil Research 32, 847–865.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Meharg A, Killham K (1990) The effect of soil pH on rhizosphere carbon flow of Lolium perenne. Plant and Soil 123, 1–7.
CAS |
open url image1

Merino A, Perez-Batallon P, Macias F (2004) Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology & Biochemistry 36, 917–925.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mkhabela MS, Gordon R, Burton D, Madani A, Hart W (2006) Effect of lime, dicyandiamide and soil water content on ammonia and nitrous oxide emissions following application of liquid hog manure to a marshland soil. Plant and Soil 284, 351–361.
CAS | Crossref |
open url image1

Monger HC , Martinez-Rios JJ (2001) Inorganic carbon sequestration in grazing lands. In ‘The potential of US grazing lands to sequester carbon and mitigate the greenhouse effect’. (Eds RF Follett, JM Kimble, R Lal) (Lewis Publishers: Boca Raton, FL)

Mørkved PT, Dorsch P, Bakken LR (2007) The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biology & Biochemistry 39, 2048–2057.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mosier AR, Delgado JA, Keller M (1998) Methane and nitrous oxide fluxes in an acid Oxisol in western Puerto Rico: Effects of tillage, liming and fertilization. Soil Biology & Biochemistry 30, 2087–2098.
CAS | Crossref |
open url image1

Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD (1995) Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studies. Soil Biology & Biochemistry 27, 1589–1599.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Murakami M, Furukawa Y, Inubushi K (2005) Methane production after liming to tropical acid peat soil. Soil Science and Plant Nutrition 51, 697–699.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Neale SP, Shah Z, Adams WA (1997) Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming. Soil Biology & Biochemistry 29, 1463–1474.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nelson DR, Mele PM (2006) The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Australian Journal of Soil Research 44, 319–329.
Crossref | GoogleScholarGoogle Scholar | open url image1

Newton RM, Burns DA, Blette VL, Driscoll CT (1996) Effect of whole catchment liming on the episodic acidification of two adirondack streams. Biogeochemistry 32, 299–322.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nisbet TR (1993) The effects of a pelletised limestone treatment on drainage water acidity within a forest catchment in mid-Wales. Journal of Hydrology 150, 521–539.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

NLWRA (2001) ‘Australian Agriculture Assessment 2001.’ (National Land and Water Resources Audit: Canberra, ACT)

Noble AD, Hurney AP (2000) Long-term effects of lime additions on sugarcane yield and soil chemical properties in North Queensland. Experimental Agriculture 36, 397–413.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nodar R, Acea MJ, Carballas T (1992) Microbiological response to Ca(OH)2 treatments in a forest soil. FEMS Microbiology Ecology 86, 213–219.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Nohrstedt HO (1988) Effect of liming and N-fertilization on denitrification and N2-fixation in an acid coniferous forest floor. Forest Ecology and Management 24, 1–13.
Crossref |
open url image1

Nohrstedt HO (2001) Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scandinavian Journal of Forest Research 16, 555–573.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nordt LC , Wilding LP , Drees LR (2000) Pedogenic carbonate transformation in leaching soil systems: Implications for the global C cycle. In ‘Global climate change and pedogenic carbonates’. (Eds R Lal, JM Kimble, H Eswaran, BA Stewart) pp. 43–64. (Lewis Publishers: Boca Raton, FL)

Oh N-H, Raymond PA (2006) Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. Global Biogeochemical Cycles 20, GB3012.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parkin TB, Sexstone AJ, Tiedje JM (1985) Adaptation of denitrifying populations to low soil-pH. Applied and Environmental Microbiology 49, 1053–1056.
CAS | PubMed |
open url image1

Persson T, Rudebeck A, Wiren A (1995) Pools and fluxes of carbon an nitrogen in 40-year-old forest liming experiments in southern Sweden. Water, Air, and Soil Pollution 85, 901–906.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Persson T, Wiren A, Andersson S (1990–91) Effects of liming on carbon and nitrogen mineralisation in coniferous forests. Water, Air, and Soil Pollution 54, 351–364.
CAS |
open url image1

Peterjohn WT, McGervey RJ, Sexstone AJ, Christ MJ, Foster CJ, Adams MB (1998) Nitrous oxide production in two forested watersheds exhibiting symptoms of nitrogen saturation. Canadian Journal of Forest Research – Revue Canadienne De Recherche Forestiere 28, 1723–1732.
CAS | Crossref |
open url image1

Rangeley A, Knowles R (1988) Nitrogen transformations in a Scottish peat soil under laboratory conditions. Soil Biology & Biochemistry 20, 385–391.
CAS | Crossref |
open url image1

Rasera M, Ballester MVR, Krusche AV, Salimon C, Montebelo LA, Alin SR, Victoria RL, Richey JE (2008) Small rivers in the southwestern Amazon and their role in CO2 outgassing. Earth Interactions 12, 1–16.
Crossref |
open url image1

Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20, 381–390.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ridley AM, Slattery WJ, Helyar KR, Cowling A (1990) The importance of the carbon cycle to acidification of a grazed annual pasture. Australian Journal of Experimental Agriculture 30, 529–537.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ridley AM, White RE, Helyar KR, Morrison GR, Heng LK, Fisher R (2001) Nitrate leaching loss under annual and perennial pastures with and without lime on a duplex (texture contrast) soil in humid southeastern Australia. European Journal of Soil Science 52, 237–252.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Roslev P, Iversen N, Henriksen K (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidisers. Applied and Environmental Microbiology 63, 874–880.
CAS | PubMed |
open url image1

Rowe BA, Johnson DE (1988) Residual effects of limestone on pasture yields, soil pH and soil aluminium in a krasnozem in north-western Tasmania. Australian Journal of Experimental Agriculture 28, 571–576.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Saari A, Martikainen PJ, Ferm A, Ruuskanen J, De Boer W, Troelstra SR, Laanbroek HJ (1997) Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. Soil Biology and Biochemistry 29, 1625–1632.
CAS | Crossref |
open url image1

Saari A, Rinnan R, Martikainen PJ (2004a) Methane oxidation in boreal forest soils: Kinetics and sensitivity to pH and ammonium. Soil Biology & Biochemistry 36, 1037–1046.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Saari A, Smolander A, Martikainen PJ (2004b) Methane consumption in a frequently nitrogen-fertilized and limed spruce forest soil after clear-cutting. Soil Use and Management 20, 65–73.
Crossref |
open url image1

Sahrawat KL, Keeney DR, Adams SS (1985) Rate of aerobic nitrogen transformations in six acid climax forest soils and the effect of phosphorus and CaCO3. Forest Science 31, 680–684. open url image1

Scott BJ, Conyers M, Poile GJ, Cullis BR (1999) Reacidification and reliming effects on soil properties and wheat yields. Australian Journal of Experimental Agriculture 39, 849–856.
Crossref | GoogleScholarGoogle Scholar | open url image1

Scott BJ, Fenton IG, Fanning AG, Schumann WG, Castleman LJC (2007) Surface soil acidity and fertility in the eastern riverina and western slopes of southern New South Wales. Australian Journal of Experimental Agriculture 47, 949–964.
Crossref | GoogleScholarGoogle Scholar | open url image1

Scott BJ, Ridley AM, Conyers MK (2000) Management of soil acidity in long-term pastures of south-eastern Australia: a review. Australian Journal of Experimental Agriculture 40, 1173–1198.
Crossref | GoogleScholarGoogle Scholar | open url image1

Semhi K, Suchet PA, Clauer N, Probst J-L (2000) Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin. Applied Geochemistry 15, 865–878.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Shah Z, Adams WA, Haven CDV (1990) Composition and activity of the microbial population in an acidic upland soil and effects of liming. Soil Biology & Biochemistry 22, 257–263.
Crossref | GoogleScholarGoogle Scholar | open url image1

Simard RR, Angers DA, Lapierre C (1994) Soil organic-matter quality as influenced by tillage, lime and phosphorus. Biology and Fertility of Soils 18, 13–18.
CAS | Crossref |
open url image1

Simek M, Cooper JE (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53, 345–354.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sitaula BK, Bakken LR, Abrahamsen GR (1995) CH4 uptake by temperate forest soil: effects of N input and soil acidification. Soil Biology & Biochemistry 27, 871–880.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Staddon PL, Ostle N, Dawson LA, Fitter AH (2003) The speed of soil carbon throughput in an upland grassland is increased by liming. Journal of Experimental Botany 54, 1461–1469.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen fertilisation on methane uptake in temperate forest soils. Nature 341, 314–316.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stevens D, Cox JW, Chittleborough DJ (1999) Pathways of phosphorus, nitrogen and carbon movement over and through texturally differentiated soils, South Australia. Australian Journal of Soil Research 37, 679–693.
CAS |
open url image1

Sumner ME (1995) Amelioration of subsoil acidity with minimum disturbance. In ‘Subsoil management techniques’. (Eds NW Jayawardane, BA Stewart) pp. 147–185. (Lewis Publishers: Boca Raton, FL)

Syamsul Arif MA, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biology and Fertility of Soils 21, 95–102.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tate RL (2000) ‘Soil microbiology.’ (John Wiley & Sons: New York)

Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chemical Geology 159, 61–86.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Thomas GW , Hargrove WL (1984) The chemistry of soil acidity. In ‘Soil acidity and liming’. (Ed. F Adams) pp. 3–56. (American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.: Madison, WI)

Traaen TS, Frogner T, Hindar A, Klieiven E, Lande A, Wright RF (1997) Whole-catchment liming at Tjonnstrond, Norway: An 11-year record. Water, Air, and Soil Pollution 94, 163–180.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Valzano FP, Murphy BW, Greene RSB (2001) The long-term effects of lime (CaCO3), gypsum (CaSO4.2H2O), and tillage on the physical and chemical properties of a sodic red-brown earth. Australian Journal of Soil Research 39, 1307–1331.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Vermoesen A, deGroot CJ, Nollet L, Boeckx P, vanCleemput O (1996) Effect of ammonium and nitrate application on the NO and N2O emission out of different soils. Plant and Soil 181, 153–162.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Wang FS, Wang YC, Zhang J, Xu H, Wei XG (2007) Human impact on the historical change of CO2 degassing flux in River Changjiang. Geochemical Transactions 8, 7.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ware JR, Smith SV, Reaka-Kudla MI (1991) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11, 127–130.
Crossref | GoogleScholarGoogle Scholar | open url image1

Webster EA, Chudek JA, Hopkins DW (2000) Carbon transformations during decomposition of different components of plant leaves in soil. Soil Biology & Biochemistry 32, 301–314.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Weier KL, Gilliam JW (1986) Effect of acidity on nitrogen mineralisation and nitrification in Atlantic coastal plain soils. Soil Science Society of America Journal 50, 1210–1214.
CAS |
open url image1

West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems & Environment 108, 145–154.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Whitten MG, Wong MTF, Rate AW (2000) Amelioration of subsurface acidity in the south-west of Western Australia: downward movement and mass balance of surface-incroporated lime after 2–15 years. Australian Journal of Soil Research 38, 711–728.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry 33, 1723–1732.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yamulki S, Harrison RM, Goulding KWT, Webster CP (1997) N2O, NO and NO2 fluxes from a grassland effect of soil pH. Soil Biology & Biochemistry 29, 1199–1208.
CAS | Crossref |
open url image1

Yang C, Telmer K, Veizer J (1996) Chemical dynamics of the “St Lawrence” riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfte, and dissolved 87Sr/86Sr. Geochimica et Cosmochimica Acta 60, 851–866.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yavitt JB, Fahey TJ, Simmons JA (1995) Methane and carbon dioxide dynamics in a northern hardwood ecosystem. Soil Science Society of America Journal 59, 796–804.
CAS |
open url image1

Yavitt JB, Simmons JA, Fahey TJ (1993) Methane fluxes in a northern hardwood forest ecosystem in relation to acid precipitation. Chemosphere 26, 721–730.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Zaman M, Nguyen ML, Matheson F, Blennerhassett JD, Quin BF (2007) Can soil amendments (zeolite or lime) shift the balance between nitrous oxide and dinitrogen emissions from pasture and wetland soils receiving urine or urea-N? Australian Journal of Soil Research 45, 543–553.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Zaman M, Nguyen ML, Saggar S (2008) N2O and N2 emissions from pasture and wetland soils with and without amendments of nitrate, lime and zeolite under laboratory condition. Australian Journal of Soil Research 46, 526–534.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Zhai WD, Dai MH, Guo XG (2007) Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry 107, 342–356.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1