Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Multivariate and geostatistical analysis of wetland soil salinity in nested areas of the Yellow River Delta

M. Yang A , S. L. Liu A C , Z. F. Yang A , T. Sun A and Robert Beazley B
+ Author Affiliations
- Author Affiliations

A School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.

B Department of Natural Resources, College of Agriculture and Life Sciences, Fernow Hall 302, Cornell University, Ithaca, NY 14853, USA.

C Corresponding author. Email: shiliangliu@bnu.edu.cn

Australian Journal of Soil Research 47(5) 486-497 https://doi.org/10.1071/SR08211
Submitted: 22 September 2008  Accepted: 30 April 2009   Published: 18 August 2009

Abstract

This study investigated scale dependency of certain soil salinity ions in topsoil horizons in the Yellow River Delta in north-east Shandong province, China. Factorial kriging analysis (FKA) was used to analyse spatial variability of soil salinity ions (Na+, K+, Mg2+, Ca2+, Cl, SO42–) sampled at 3 nested areas over a geologically contrasting region. Correlation analysis and principal component analysis (PCA) were performed on the logarithmic variables, then multivariate geostatistics was used to investigate scale dependency of soil salinity spatial variability and auto- and cross-variograms exhibited by 3 spatial structures: nugget effect, short-range, and long-range structures. Statistical analysis showed that NaCl was the main salinity type over the 3 nested sample areas. In addition, the variables were random and regional, which implied that a linear model of coregionalisation was feasible for the analysis of their spatial variability. The coefficients of the coregionalisation matrix showed that the short-range structures of auto- and cross-correlation for soil salinity were dominant at the large and middle-sized sample areas, while the long-range structure dominated at the small area. The resulting structural correlation coefficients showed strong correlations between variables changing as a function of spatial scale. These relationships between soil salinity variables at different spatial structures were not acquired by the linear correlation coefficients.

PCA was then performed on the coregionalisation matrices at each sample area to summarise the relationships among variables at different spatial structures. From the synthetic analysis of coregionalisation matrices, correlation matrices, and principal components, we concluded that soil genesis and parent material may act on short-range variation of soil salinity, while climate and topography may influence long-range structure at the large sample area. At the middle-sized sample area, variations were mostly affected by mineral fertilisation at the short-range structure, while human activities such as irrigation and drainage in wetland restorations influenced the soil salinity spatial variability at the long-range scale. Vegetation and groundwater table may also be important factors influencing the spatial variability of soil salinity at different spatial structures at the small sample areas.

Additional keywords: spatial variability, salinity, factory kriging, PCA, coregionalisation.


Acknowledgements

This study was supported by the National Key and Important Program for Basic Research of China (No. 2006CB403303) and the National Natural Sciences Foundation of China (No. 40871237; No. 40501067). The authors would like to thank instructor Liu R M for guiding in operation of multivariate geostatistical techniques.


References


Bárdossy A, Lehmann W (1998) Spatial distribution of soil moisture in a small catchment. Part 1: Geostatistical analysis. Journal of Hydrology 206, 1–15.
Crossref | GoogleScholarGoogle Scholar | open url image1

Batista AC, Sousa AJ, Batista MJ, Viegas L (2001) Factorial kriging with external drift: a case study on the Penedono Region, Portugal. Applied Geochemistry 16, 921–929.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bishop TFA, Lark RM (2006) The geostatistical analysis of experiments at the landscape-scale. Geoderma 133, 87–106.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bocchi S, Castriganò A, Fornaro F, Maggiore T (2000) Application of factorial kriging for mapping soil variation at field scale. European Journal of Agronomy 13, 295–308.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bourennane H, Salvador-Blanes S, Cornu S, King D (2003) Scale of spatial dependence between chemical properties of topsoil and subsoil over a geologically contrasted area (Massif central, France). Geoderma 112, 235–251.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Brady NC , Weil R (2002) ‘The nature and properties of soils.’ (Prentice-Hall: Upper Saddle River, NJ)

Bruelheide H, Udelhoven P (2005) Correspondence of the fine-scale spatial variation in soil chemistry and the herb layer vegetation in beech forests. Forest Ecology and Management 210, 205–223.
Crossref | GoogleScholarGoogle Scholar | open url image1

Casa R, Castrignanò A (2008) Analysis of spatial relationships between soil and crop variables in a durum wheat field using a multivariate geostatistical approach. European Journal of Agronomy 28, 331–342.
Crossref | GoogleScholarGoogle Scholar | open url image1

Castrignanò A, Giugliarini L, Risaliti R, Martinelli N (2000b) Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 97, 39–60.
Crossref | GoogleScholarGoogle Scholar | open url image1

Castrignanò A, Goovaerts P, Lulli L, Bragato G (2000a) A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma 98, 95–113.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dobermann A (1994) Factors causing field variation of direct-seeded flooded rice. Geoderma 62, 125–150.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dobermann A, Goovaerts P, George T (1995) Sources of soil variation in an acid Ultisol of the Philippines. Geoderma 68, 173–191.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Einax JW, Soldt U (1998) Multivariate geostatistical analysis of soil contaminations. Fresenius’ Journal of Analytical Chemistry 361, 10–14.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fang HL, Liu GH, Kearney M (2005) Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environmental Management 35(1), 72–83.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goovaerts P (1992) Factorial kriging analysis: a useful tool for exploring the structure of multivariate spatial information. Journal of Soil Science 43, 597–619.
Crossref | GoogleScholarGoogle Scholar | open url image1

Goovaerts P (1997) ‘Geostatistics for natural resources evaluation.’ (Oxford University Press: New York)

Goovaerts P (1998) Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils 27, 315–334.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Guo FQ, Tang ZC (1999) Difference in Na+, K+ accumulation in the salt tolerant mutant and the wild type of wheat during exposure to NaCl stress. Acta Botanica Sinica 41(5), 515–518.
CAS |
open url image1

Hernández P, Fernández R, Novo M, Trigo D, Diaz Cosin DJ (2007) Geostatistical and multivariate analysis of the horizontal distribution of an earthworm community in El Molar (Madrid, Spain). Pedobiologia 51, 13–21.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heuvelink GBM, Webster R (2001) Modelling soil variation: past, present, and future. Geoderma 100, 269–301.
Crossref | GoogleScholarGoogle Scholar | open url image1

Imrie CE, Korre A, Munoz-Melendez G, Thornton I, Durucan S (2008) Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database. The Science of the Total Environment 393, 96–110.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jenny H (1941) A system of quantitative pedology. In ‘Factors of soil formation’. (McGraw Hill: New York)

Jiménez-Espinosa R, Chica-Olmo M (1999) Application of geostatistics to identify gold-rich areas in the Finisterre–Fervenza region, NW Spain. Applied Geochemistry 14, 133–145.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li BG, Cao J, Liu WX, Shen WR, Wang XJ, Tao S (2006) Geostatistical analysis and kriging of Hexachlorocyclohexane residues in topsoil from Tianjin, China. Environmental Pollution 142, 567–575.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Li SH, Xu X, Hui HX, Mi HL, Ma XQ (2002) Study on K+, Na+ selective absorption of different organs of spring wheat under soil saline sodic stress in different growth season. Acta Botanica Boreal-Occident Sinica 22(3), 587–594.
CAS |
open url image1

Lin HS, Wheeler D, Bell J, Wilding L (2005) Assessment of soil spatial variability at multiple scales. Ecological Modelling 182, 271–290.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lin YB, Lin YP, Lui CW, Tan YC (2006) Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan. The Science of the Total Environment 370, 168–181.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lin YB, Tan YC, Lin YP, Liu CW, Hung CJ (2004) Geostatistical method to delineate anomalies of multi-scale spatial variation in hydrogeological changes due to the ChiChi earthquake in the ChouShui River alluvial fan in Taiwan. Environmental Geology 47, 102–118.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lin YP, Chang TK, Shi CW, Tseng CH (2002) Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology 42, 900–909.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Liu G , Drost HJ (1997) ‘Atlas of the Yellow River Delta.’ (House of Surveying and Mapping Publishing: Beijing)

Marx DB, Gilmour JT, Scott HD, Ferguson JA (1988) Effects of long-term water management in a humid region on spatial variability of soil chemical status. Soil Science 145, 188–193.
Crossref | GoogleScholarGoogle Scholar | open url image1

Matheron G (1982) Pour une analyse Krigeante des donnees regionalisees. Report 732. Centre de Geostatistique, Fontainebleau, France.

Mohawesh O, Ishida T, Fukumura K, Yoshino K (2008) Assessment of spatial variability of penetration resistance and hardpan characteristics in a cassava field. Australian Journal of Soil Research 46, 210–218.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oliver MA, Webster R, Slocum K (2000) Filtering SPOT imagery by kriging analysis. International Journal of Remote Sensing 21, 735–752.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pardo-Igúzquiza E, Dowd PA (2002) FACTOR 2D: a computer program for factorial cokriging. Computers & Geosciences 28, 857–875.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pye K, Blott SJ, Croft DJ, Carter JF (2006) Forensic comparison of soil samples: Assessment of small-scale spatial variability in element composition, carbon and nitrogen isotope ratios, color, and particle size distribution. Forensic Science International 163, 59–80.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Qiu Y, Fu BJ, Wang J, Chen LD (2001) Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. Journal of Arid Environments 49, 723–750.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reis AP, Sousa AJ, Cardoso Fonseca E (2003) Application of geostatistical methods in gold geochemichal anomalies identification (Motemor-o-Novo, Portugal). Journal of Geochemical Exploration 77(1), 45–63.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Reis AP, Sousa AJ, Ferreira da Silva E, Patinha C, Fonseca EC (2004) Combining multiple correspondence analysis with factorial kriging analysis for geochemical mapping of the gold-silver deposit at Marrancos (Portugal). Applied Geochemistry 19, 623–631.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Rodgers SE, Oliver MA (2007) A geostatistical analysis of soil, vegetation, and image data characterizing land surface variation. Geographical Analysis 39, 195–216.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rodríguez JA, Nanos N, Grau JM, Gil L, López-Arias M (2008) Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere 70, 1085–1096.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ryu JS, Lee KS, Kim JH, Ahn KH, Chang HW (2006) Geostatistical analysis for hydrogeochemical characterization of the Han River, Korea: Identification of major factors governing water chemistry. Bulletin of Environmental Contamination and Toxicology 76, 1–7.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Saporta A (1990) Probabilités, Analyse Des Données et Statistique, Technip, Paris.

Shan K (2007) Theory, methodology and practices of wetland ecological restoration in Yellow River Delta Nature Reserve. Wetland Science and Management [In Chinese] 3(4), 16–20. open url image1

Shao HB, Chu LY, Shao MA (2008) Calcium as a versatile plant signal transducer under soil water stress. BioEssays 30, 634–641.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Song YM, Zhang JF, Xing SJ, Xing SJ, Xi JB (2003) Features of plant community and its restoration techniques in Yellow River Delta Region. Journal of Northeast Forestry University 31(6), 87–89. open url image1

Tarnavsky E, Garrigues S, Brown ME (2008) Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment 112, 535–549.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tavares MT, Sousa AJ, Abreu MM (2008) Ordinary kriging and indicator kriging in the cartography of trace elements contamination in Sāo Domingos mining site (Alentejo, Portugal). Journal of Geochemical Exploration 98(1–2), 43–56.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

van Meirvenne M, Goovaerts P (2002) Accounting for spatial dependence in the processing of multi-temporal SAR images using factorial kriging. International Journal of Remote Sensing 23, 371–387.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wackernagel H (1998) ‘Multivariate geostatistics: An introduction with applications.’ (Springer Publishing: Berlin)

Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14, 133–137.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang SJ, Hassan MA, Xie XP (2006) Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta. Catena 65, 302–314.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. Journal of Hydrology 246, 223–234.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Weng YL, Gong P (2006) Soil salinity measurements on the Yellow River Delta. Journal of Nanjing University (Natural Science) 42(6), 602–610.
CAS |
open url image1

Xu JX (2003) Sediment flux to the sea as influenced by changing human activities and precipitation: Example of the Yellow River, China. Environmental Management 32(3), 328–341.
CAS |
open url image1

Xu S, Tao S (2004) Coregionalisation analysis of heavy metals in the surface soil of Inner Mongolia. The Science of the Total Environment 320, 73–87.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1