Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley

Budiman Minasny A D , Alex. B. McBratney A , M. L. Mendonça-Santos B , I. O. A. Odeh A and Brice Guyon C
+ Author Affiliations
- Author Affiliations

A Faculty of Agriculture, Food & Natural Resources, The University of Sydney, JRA McMillan Building A05, NSW 2006, Australia.

B EMBRAPA-Centro Nacional de Pesquisa de Solos, Rua Jardim Botânico 1024, 22.460-000 Rio de Janeiro-RJ, Brazil.

C Ecole Nationale d’Ingenieurs des Travaux Agricoles de Bordeaux, 1 cours du general de Gaulle, B.P. 201, 33175 Gradignan, Cedex, France.

D Corresponding author. Email: b.minasny@usyd.edu.au

Australian Journal of Soil Research 44(3) 233-244 https://doi.org/10.1071/SR05136
Submitted: 12 September 2005  Accepted: 17 February 2006   Published: 5 May 2006

Abstract

Estimation and mapping carbon storage in the soil is currently an important topic; thus, the knowledge of the distribution of carbon content with depth is essential. This paper examines the use of a negative exponential profile depth function to describe the soil carbon data at different depths, and its integral to represent the carbon storage. A novel method is then proposed for mapping the soil carbon storage in the Lower Namoi Valley, NSW. This involves deriving pedotransfer functions to predict soil organic carbon and bulk density, fitting the exponential depth function to the carbon profile data, deriving a neural network model to predict parameters of the exponential function from environmental data, and mapping the organic carbon storage. The exponential depth function is shown to fit the soil carbon data adequately, and the parameters also reflect the influence of soil order. The parameters of the exponential depth function were predicted from land use, radiometric K, and terrain attributes. Using the estimated parameters we map the carbon storage of the area from surface to a depth of 1 m. The organic carbon storage map shows the high influence of land use on the predicted storage. Values of 15–22 kg/m2 were predicted for the forested area and 2–6 kg/m2 in the cultivated area in the plains.

Additional keywords: soil information system, neural networks, carbon stock, carbon sequestration, organic carbon, Vertosol, digital soil mapping.


Acknowledgment

This work is supported by funding from ARC Discovery Project on Digital Soil Mapping and ARC Linkage Project on Soil Inference Systems. We thank Miss Charlotte Moore for classifying the soil profiles and Dr Damien Field for assistance in the pedological interpretation.


References


Adams WA (1973) The effect of organic matter on the bulk and true densities of some uncultivated podsolic soils. Journal of Soil Science 24, 10–17. open url image1

Arrouays D, Pélissier P (1994) Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Science 157, 185–192. open url image1

Barson MM , Malafant K , Skjemstad JO , Royle S , Janik LJ , Spouncer LR , Merry RH (2004) Estimating the size of Australia’s soil carbon sinks. In ‘SuperSoil, 3rd Australia New Zealand Soil Conference’. Sydney, 5–9 December 2004. (ASSSI/NZSSS)

Batjes NH (1996) Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151–163.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437, 245–248.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bennema J (1974) Organic carbon profiles in Oxisols. Pedologie 24, 119–146. open url image1

Bernoux M, Arrouays D, Cern CC, Bourennane H (1998) Modeling vertical distribution of carbon in oxisols of the western Brazilian Amazon (Rondonia). Soil Science 163, 941–951.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bernoux M, Carvalho MCS, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Science Society of America Journal 66, 888–896. open url image1

Beven K, Wood EF (1983) Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology 65, 139–158.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bishop TFA, McBratney AB, Laslett GM (1999) Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91, 27–45.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chilès JP , Delfiner P (1999) ‘Geostatistics: modeling spatial uncertainty.’ (Wiley Inter-Science: New York)

Cook SE, Corner RJ, Groves PR, Grealish GJ (1996) Use of airborne gamma radiometric data for soil mapping. Australian Journal of Soil Research 34, 183–194.
Crossref | GoogleScholarGoogle Scholar | open url image1

Elzein A, Balesdent J (1995) Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. Soil Science Society of America Journal 59, 1328–1335. open url image1

Gallant JC , Wilson JP (2000) Primary topographic attributes. In ‘Terrain analysis: principles and applications’. (Eds JP Wilson, JC Gallant) pp. 51–85. (John Wiley & Sons: New York)

Hilinski TE (2001) ‘Implementation of exponential depth distribution of organic carbon in the CENTURY Model. CENTURY soil organic matter model user’s manual.’ (Department of Soil and Crop Sciences, Colorado State University: Fort Collins, CO)

Isbell RF (1996) ‘The Australian Soil Classification.’ (CSIRO Publishing: Melbourne, Vic.)

Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10, 423–436.
Crossref |
open url image1

Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56, 655–671.
Crossref | GoogleScholarGoogle Scholar | open url image1

Knowles T, Singh B (2003) Carbon storage in cotton soils of northern New South Wales. Australian Journal of Soil Research 41, 889–903.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mathworks (2005) ‘Matlab Release 14.’ (The Mathworks Inc.: Natick, MA)

McBratney AB , Lagacherie P (2004) Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. In ‘Global Workshop on Digital Soil Mapping’. Montpellier, France.

McBratney AB, Mendonça-Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117, 3–52.
Crossref | GoogleScholarGoogle Scholar | open url image1

McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109, 41–73.
Crossref | GoogleScholarGoogle Scholar | open url image1

McGarry D , Ward WT , McBratney AB (1989) ‘Soil studies in the Lower Namoi Valley: methods and data. The Edgeroi data set.’ 2 Vols. (CSIRO Division of Soils: Adelaide)

Mestdagh I, Lootens P, Van Cleemput O, Carlier L (2004) Soil organic carbon stocks in Flemish grasslands: how accurate are they? Grass and Forage Science 59, 310–317.
Crossref | GoogleScholarGoogle Scholar | open url image1

Minasny B, McBratney AB (2002) The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal 66, 352–361. open url image1

Mikhailova EA, Post CJ (2006) Organic carbon stocks in the Russian Chernozem. European Journal of Soil Science In press , open url image1

Nakane K (1976) An empirical formulation of the vertical distribution of carbon concentration in forest soils. Japanese Journal of Ecology 26, 171–174. open url image1

Odeh IOA , McBratney AB , Triantafilis J (2003) Dynamic modelling of soil physical-chemical processes as indicators of soil health in relation to land use in the cotton-growing region. Australian Cotton Cooperative Research Centre Annual Report 2002–03. Australian Cotton CRC, Myall Vale Narrabri, NSW.

Ogawa H, Yoda K, Kira T (1961) A preliminary survey on the vegetation of Thailand. Nature and Life in Southeast Asia 1, 21–157. open url image1

Ponce-Hernandez R, Marriott FHC, Beckett PHT (1986) An improved method for reconstructing a soil profile from analyses of a small number of samples. Journal of Soil Science 37, 455–467. open url image1

Rosenbloom N, Doney SC, Schimel DS (2001) Geomorphic evolution of soil texture and organic matter in eroding landscapes. Global Biogeochemical Cycles 15, 365–381.
Crossref | GoogleScholarGoogle Scholar | open url image1

Russell JS , Moore AW (1968) Comparison of different depth weightings in the numerical analysis of anisotropic soil profile data. In ‘Transaction of the 9th International Congress of Soil Science’. Adelaide, Vol. IV, pp. 205–213.

Spain AV (1990) Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some Australian rainforest soils. Australian Journal of Soil Research 28, 825–839.
Crossref | GoogleScholarGoogle Scholar | open url image1

Spain AV , Isbell RF , Probert ME (1983) Soil organic matter. In ‘Soils, an Australian viewpoint’. pp. 551–563. (CSIRO Publishing: Melbourne, Vic.)

Van den Berg M, Klamt E, Van Reeuwijk LP, Sombroek WG (1997) Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma 78, 161–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

Viscarra Rossel RA, Minasny B, Roudier P, McBratney AB (2006) Colour space models for soil science. Geoderma Available online 15 September 2005. ,  – . open url image1

Walter C, Viscarra Rossel RA, McBratney AB (2003) Spatio-temporal simulation of the field-scale evolution of organic carbon over the landscape. Soil Science Society of America Journal 67, 1477–1486. open url image1

Ward WT (1999) Soils and landscapes near Narrabri and Edgeroi, New South Wales, with data analysis using fuzzy k-means. CSIRO Land and Water Technical Report 22/99.

Webster R (1978) Mathematical treatment of soil information. In ‘Proceedings of the 11th International Congress of Soil Science’. Edmonton, Canada, Vol 3, pp. 161–190.

Wong MTF, Harper RJ (1999) Use of on-ground gamma-ray spectrometry to measure plant-available potassium and other topsoil attributes. Australian Journal of Soil Research 37, 267–278.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zinn YL, Lal R, Resck DVS (2005) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127, 168–173.
Crossref | GoogleScholarGoogle Scholar | open url image1