Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Hydrolysable carbohydrate in tropical soils under adjacent forest and savanna vegetation in Lamto, Côte d’Ivoire

Hassan Bismarck Nacro A D , Marie Christine Larré-Larrouy B , Christian Feller B and Luc Abbadie C
+ Author Affiliations
- Author Affiliations

A Present address: Institut du Développement Rural, Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso.

B Laboratoire Matière Organique des Sols Tropicaux, IRD-CIRAD, BP 64501, Montpellier Cedex 5, France.

C Laboratoire d’Ecologie, UMR.7625, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France.

D Corresponding author. Email address: nacrohb@yahoo.fr

Australian Journal of Soil Research 43(6) 705-711 https://doi.org/10.1071/SR03134
Submitted: 3 September 2003  Accepted: 2 May 2005   Published: 22 September 2005

Abstract

Carbohydrates represent 5–25% of the organic matter in soils. They constrain microbial activities and mineral nutrient production in soil and also reflect the whole microorganism community dynamic. The objective of this study was to determine the contents and composition of hydrolysable carbohydrates in soils collected in a forest–savanna mosaic landscape in the region of Lamto (Côte d’Ivoire). Capillary gas chromatography was used to identify and determine carbohydrates in soil profile under 4 tropical ecosystems: gallery and plateau forests, and grass and shrub tree savannas. Forest soils were higher in organic matter than savanna soils (0.50–2.96% C v. 0.53–1.22% C). The carbohydrate-C content of soils, expressed as percentage of total soil organic C, was low, a likely consequence of the tropical climate that promotes a rapid decomposition of surface plant debris. The carbohydrate-C content was higher under savanna soils (5–7%) than under forest soils (3–4%). Glucose, ribose, mannose, xylose, and galactose were the 5 most abundant extractable monosaccharides in all soils. Between them, only xylose and ribose are controlled by the vegetation type. The [(galactose + mannose) : (arabinose + xylose)] and [mannose : xylose] ratios suggested that most soil sugars derive from microbial biomass. The large abundance of microbial carbohydrates indicates intense microbial activities in the soil, and then rapid decomposition of soil organic matter favoured by the long wet season, with high temperatures and soil water availability at the site study. Results suggest clearly that the climate likely controls the amount and composition of carbohydrates in Lamto soils.

Additional keywords: monosaccharide, soil microorganisms, soil organic matter, microbially derived compounds, carbon, nitrogen.


Acknowledgments

The authors acknowledge critical and helpful comments by the editor and 2 anonymous reviewers. We gratefully acknowledge R. Vuattoux, Director of the Lamto Ecological Research Station, for all the facilities he offered in the field. We thank also D. Benest and G. Guillaune for efficient help during laboratory experiments. This study was financially supported by the SALT programme (CNRS, Programme Environnement, Vie et Sociétés) directed by J. C. Menaut.


References


Abbadie L, Lensi R (1990) Carbon and nitrogen mineralization and denitrification in a humid savanna of West Africa (Lamto, Côte d’Ivoire). Acta Œcologica 11, 717–728. open url image1

Amelung W, Flach KW, Zech W (1999) Neutral and acidic sugars in particle-size fractions as influenced by climate. Soil Science Society of America Journal 63, 865–873. open url image1

Anne P (1945) Sur le dosage rapide du carbone organique des sols. Annales Agronomiques 2, 162–172. open url image1

Appel TR, Pfanschilling R, Xu FL (1999) Amino acids and amino sugars extracted by EUF from a sandy soil incubated with green manure, bacterial biomass or cellulose. Journal of Plant Nutrition and Soil Science 162, 615–622.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheshire, MV (1979). ‘Nature and origin of carbohydrates in soil.’ (Academic Press: London)

Dalal RC, Henry RJ (1988) Cultivation effects on carbohydrate contents of soil and fractions. Soil Science Society of America Journal 52, 1361–1365. open url image1

FAO (1989). ‘Carte mondiale des sols, légende revisée.’ (FAO: Rome)

Feller C (1994) La matière organique dans les sols tropicaux à argile 1 : 1. Recherche de compartments organiques fonctionnels. Une approche granulométrique. Doctorat ès Sciences Naturelles, Université Louis Pasteur, Strasbourg.

Feller C, François C, Villemin G, Portal JM, Toutain F, Morel JL (1991) Nature des matières organiques associées aux fractions argileuses d’un sol ferrallitique. Comptes Rendus de l’Académie des Sciences Paris 312, 1491–1497. open url image1

Folsom BL, Wagner GH, Scrivner CL (1974) Comparison of soil carbohydrate in several prairie and forest soils by gas-liquid chromatography. Soil Science Society of America Proceedings 38, 305–309. open url image1

Guggenberger G, Zech W (1999) Soil organic matter composition under primary forest, pasture and secondary forest succession, Region Huerta Norte, Costa Rica. Forest Ecology and Management 124, 93–104.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones MJ (1973) The organic matter content of the savanna soils of West Africa. Journal of Soil Science 24, 42–53. open url image1

Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology and Biochemistry 35, 101–118.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kouakoua E, Larré-Larrouy MC, Barthès B, De Freitas PL, Neves C, Sala GH, Feller C (1999) Relations entre stabilité de l’agrégation et matière organique totale et soluble à l’eau chaude dans les sols ferralitiques argileux (Congo, Brésil). Canadian Journal of Soil Science 79, 561–569. open url image1

Larré-Larrouy MC, Feller C (1997) Determination of carbohydrates in two ferralitic soils and their particle-size fractions: analysis by capillary gas chromatography after derivation by silylation. Soil Biology and Biochemistry 29, 1585–1589.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mary B, Fresneau C, Morel JL, Mariotti A (1993) C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biology and Biochemistry 25, 1005–1014.
Crossref | GoogleScholarGoogle Scholar | open url image1

Menaut JC (1974) Chute de feuilles et apport au sol de litière par les ligneux dans une savane préforestière de Côte d’Ivoire. Bulletin d’Ecologie 5, 27–39. open url image1

Menaut JC, César J (1979) Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60, 1197–1210. open url image1

Möller A, Kaiser K, Zech W (2002) Lignin, carbohydrate, and amino suggar distribution and transformation in the tropical highlands soils of northern Thailand under cabbage cultivation, Pinus reforestation, secondary forest, and primary forest. Australian Journal of Soil Research 40, 977–998.
Crossref |
open url image1

Mordelet P (1993) Influence des arbres sur la strate herbacée d’une savane humide (Lamto, Côte d’Ivoire). Doctorat de l’Université Paris VI.

Murata T, Tanaka H, Yasue S, Hamada R, Sakagami K, Kurokawa Y (1999) Seasonal variations in soil microbial contrent and soil neutral sugar composition in grassland in the Japanese temperate zone. Applied Soil Ecology 11, 253–259.
Crossref | GoogleScholarGoogle Scholar | open url image1

Murayama S (1977) Saccharides in some Japanese paddy soils. Journal of Soil Science and Plant Nutrition 23, 479–489. open url image1

Nacro HB, Benest D, Abbadie L (1996) Distribution of microbial activities and organic matter according to particle size in a humid savanna soil (Lamto, Côte d’Ivoire). Soil Biology and Biochemistry 28, 1687–1697.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nacro HB (1997) Hétérogénéité fonctionnelle de la matière organique dans un sol de savanne humide (Lamto, Côte d’Ivoire): caractérisation chimique et étude, in vitro, des activités microbiennes de minéralisation du carbone et de l’azote. Thèse de Doctorat, Université Paris VI.

Oades JM (1972) Studies on soil polysaccharides. III. Compositions of polysaccharides in some Australian soils. Australian Journal of Soil Research 10, 113–126.
Crossref | GoogleScholarGoogle Scholar | open url image1

Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76, 319–337. open url image1

Puget P, Angers DA, Chenu C (1998) Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemistry 31, 55–63.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rodionov A, Amelung W, Urusevskaja I, Zech W (1999) Climatic effect on lignin and polysaccharides in particle-size fractions of zonal steppe soils, Russia. Journal of Soil Science and Plant Nutrition 162, 231–238.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sall S, Brauman A, Fall S, Rouland C, Mimabi E, Chotte J-L (2002) Variation in the distribution of monosaccharides in soils fractions in the mounds of termites with different feeding habits (Senegal). Biology and Fertility of Soils 36, 232–239.
Crossref | GoogleScholarGoogle Scholar | open url image1

SAS Institute Inc. (1990). ‘SAS System for Linear Models.’ (SAS Institute: Cary, NC)

Solomon D, Fritzsche F, Tekalign M, Lehmann J, Zech W (2002) Soil organic matter composition in the Subhumid Ethiopian highlands as influenced by deforestation and agricultural management. Soil Science Society of America Journal 66, 68–82. open url image1

Steinberger Y, Lavee H, Barness G, Davidor M (1999) Soil carbohydrates along a topoclimatic gradient in a Judean desert ecosystem. Land Degradation and Development 10, 523–530.
Crossref | GoogleScholarGoogle Scholar | open url image1

Turchenek LW, Oades JM (1979) Fractionation of organo-mineral complexes by sedimentation and density techniques. Geoderma 21, 311–344.
Crossref | GoogleScholarGoogle Scholar | open url image1