Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification

Susan Rutherford A B C , Peter G. Wilson B , Maurizio Rossetto B and Stephen P. Bonser A
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia.

B National Herbarium of NSW, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia.

C Corresponding author. Email: susan.rutherford@rbgsyd.nsw.gov.au

Australian Systematic Botany 28(6) 326-354 https://doi.org/10.1071/SB15038
Submitted: 3 September 2015  Accepted: 7 December 2015   Published: 10 May 2016

Abstract

Eucalyptus is a genus that occurs in a range of habitats in Australia, Papua New Guinea, Timor, Sulawesi and the Philippines, with several species being used as sources of timber and fibre. However, despite its ecological and commercial significance, understanding its evolutionary history remains a challenge. The focus of the present study is the green ashes (subgenus Eucalyptus section Eucalyptus). Although previous studies, based primarily on morphology, suggest that the green ashes form a monophyletic group, there has been disagreement concerning the divergence of taxa. The present study aims to estimate the phylogeny of the green ashes and closely related eucalypts (37 taxa from over 50 locations in south-eastern Australia), using genome-wide analyses based on Diversity Arrays Technology (DArT). Results of analyses were similar in topology and consistent with previous phylogenies based on sequence data. Many of the relationships supported those proposed by earlier workers. However, other relationships, particularly of taxa within the Sydney region and Blue Mountains, were not consistent with previous classifications. These findings raise important questions concerning how we define species and discern relationships in Eucalyptus and may have implications for other plant species, particularly those with a complex evolutionary history where hybridisation and recombination have occurred.

Additional keywords: Australia, DArT, Diversity Arrays Technology, Eucalyptus, hybridisation, phylogenetics, recombination.


References

Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Randall Linder C, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50, 979–995.
The evolution of plant ecophysiological traits: recent advances and future directions.Crossref | GoogleScholarGoogle Scholar |

Atlas of Living Australia (2015) Spatial portal. Available at http://spatial.ala.org.au/?q=qid%3A1423528839339&qc=data_hub_uid:dh2# [Verified 1 August 2015]

Australia’s Virtual Herbarium (2015) Occurrence records. Available at http://avh.ala.org.au/occurrences/search?q=collector_text%3ARutherford+matched_name_children%3AEucalyptus#tab_mapView [Verified 1 August 2015]

Bayly MJ, Ladiges PY (2007) Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae). Molecular Phylogenetics and Evolution 44, 346–356.
Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOltbo%3D&md5=3a6923ab5deb7de6d181ddc99cae8fe3CAS | 17188000PubMed |

Bayly MJ, Udovicic F, Gibbs AK, Parra-O C, Ladiges PY (2008) Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis. Cladistics 24, 131–146.
Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts: Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69, 704–716.
Chloroplast genome analysis of Australian eucalypts: Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1eltLrO&md5=924978c102a3a143cada25ffde2d8867CAS | 23876290PubMed |

Benson D, McDougall L (1998) Ecology of Sydney plant species Part 6: dicotyledon family Myrtaceae. Cunninghamia 5, 808–987.

Brooker MIH (2000) A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
A new classification of the genus Eucalyptus L’Hér. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Brooker MIH, Kleinig DA (2006) ‘Field Guide to Eucalypts’, 3rd edn. (Bloomings Books: Melbourne)

Byrne M (2007) Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Australian Journal of Botany 55, 316–325.
Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora.Crossref | GoogleScholarGoogle Scholar |

Chappill JA, Ladiges PY (1996) Phylogenetic analysis of Eucalyptus informal subgenus Symphyomyrtus section Maidenaria. Australian Systematic Botany 9, 71–93.
Phylogenetic analysis of Eucalyptus informal subgenus Symphyomyrtus section Maidenaria.Crossref | GoogleScholarGoogle Scholar |

Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications 2, 193
Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary.Crossref | GoogleScholarGoogle Scholar | 21326225PubMed |

Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. Journal of Computational Biology 9, 687–705.
Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslClurs%3D&md5=b2f695e6eedd9a07553ae6ab6ce70d35CAS | 12487758PubMed |

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) ‘Eucalypt Domestication and Breeding.’ (Oxford University Press: New York)

Farris J (1977) Phylogenetic analysis under Dollo’s law. Systematic Biology 26, 77–88.
Phylogenetic analysis under Dollo’s law.Crossref | GoogleScholarGoogle Scholar |

Field DL, Ayre DJ, Whelan RJ, Young AG (2011a) Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida. Heredity 106, 841–853.
Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvkslSqtw%3D%3D&md5=aad38881acc797bfd173bfa78ce874bdCAS | 21063438PubMed |

Field DL, Ayre DJ, Whelan RJ, Young AG (2011b) The importance of pre-mating barriers and the local demographic context for contemporary mating patterns in hybrid zones of Eucalyptus aggregata and Eucalyptus rubida. Molecular Ecology 20, 2367–2379.
The importance of pre-mating barriers and the local demographic context for contemporary mating patterns in hybrid zones of Eucalyptus aggregata and Eucalyptus rubida.Crossref | GoogleScholarGoogle Scholar | 21375638PubMed |

Francis AR, Steel M (2015) Tree-like reticulation networks: when do tree-like distances also support reticulate evolution? Mathematical Biosciences 259, 12–19.
Tree-like reticulation networks: when do tree-like distances also support reticulate evolution?Crossref | GoogleScholarGoogle Scholar | 25447812PubMed |

Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, Gonzalez CC, Wilf P, Cuneo NR, Johnson KR (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS One 6, e21084
Oldest known Eucalyptus macrofossils are from South America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1yqtLg%3D&md5=2ab7d1a4c5973728b8cc6b0866482f79CAS | 21738605PubMed |

Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. The Journal of Experimental Biology 208, 3015–3035.
Phylogenetic approaches in comparative physiology.Crossref | GoogleScholarGoogle Scholar | 16081601PubMed |

Govindarajulu R, Parks M, Tennessen JA, Liston A, Ashman T-L (2015) Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species. American Journal of Botany 102, 544–554.
Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species.Crossref | GoogleScholarGoogle Scholar | 25878088PubMed |

Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genetics & Genomes 8, 463–508.
Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus.Crossref | GoogleScholarGoogle Scholar |

Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit: a review. Australian Journal of Botany 36, 41–66.
Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit: a review.Crossref | GoogleScholarGoogle Scholar |

Hager T, Benson D (2010) The eucalypts of the Greater Blue Mountains World Heritage Area: distribution, classification and habitats of the species of Eucalyptus, Angophora and Corymbia (family Myrtaceae) recorded in its eight conservation reserves. Cunninghamia 11, 425–444.

Hermsen EJ, Gandolfo MA, del Carmen Zamaloa M (2012) The fossil record of Eucalyptus in Patagonia. American Journal of Botany 99, 1356–1374.
The fossil record of Eucalyptus in Patagonia.Crossref | GoogleScholarGoogle Scholar | 22859652PubMed |

Hill KD (1991) Myrtaceae: Eucalyptus. In ‘Flora of New South Wales. Vol. 2’. (Ed. GJ Harden) pp.76–142. (New South Wales University Press: Sydney)

Hill RS (1994) Chapter 16: the history of selected Australian taxa. In ‘History of the Australian Vegetation: Cretaceous to Recent’. (Ed. RS Hill) pp. 390–419. (Cambridge University Press: Cambridge, UK).

Hill KD (2002) Myrtaceae: Eucalyptus. In ‘Flora of New South Wales. Vol. 2’, revised edn. (Ed. GJ Harden) pp. 96–164. (University of New South Wales Press: Sydney)

Hill KD, Johnson LAS (1995) Systematic studies in the eucalypts. 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6, 185–504.
Systematic studies in the eucalypts. 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Hodson MJ, White PJ, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 1027–1046.
Phylogenetic variation in the silicon composition of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsL3F&md5=2abdaec455cc8b2e8df1716335b9bcdaCAS | 16176944PubMed |

Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist 161, 585–594.
Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae).Crossref | GoogleScholarGoogle Scholar |

Hudson CJ, Freeman JS, Kullan ARK, Petroli CD, Sansaloni CP, Kilian A, Detering F, Grattapaglia D, Potts BM, Myburg AA, Vaillancourt RE (2012) A reference linkage map for eucalypts. BMC Genomics 13, 240
A reference linkage map for eucalypts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslamu7zM&md5=26a6d18ac3e612608f4ac465e04243c9CAS | 22702473PubMed |

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=b8644e64d679ca4a9de09f610a1cf0f1CAS | 11524383PubMed |

Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.
SplitsTree: analyzing and visualizing evolutionary data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFygs70%3D&md5=5082b5b584070d21818863580a389b7aCAS | 9520503PubMed |

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
Application of phylogenetic networks in evolutionary studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntValsw%3D%3D&md5=e56e55f9f49efd5f4815ee43baf3672eCAS | 16221896PubMed |

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, 25e
Diversity arrays: a solid state technology for sequence information independent genotyping.Crossref | GoogleScholarGoogle Scholar |

Kim S-T, Donoghue MJ (2008) Incongruence between cpDNA and nrITS trees indicates extensive hybridisation within Eupersicaria (Polygonaceae). American Journal of Botany 95, 1122–1135.
Incongruence between cpDNA and nrITS trees indicates extensive hybridisation within Eupersicaria (Polygonaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygs73F&md5=6b18740bafe5a922e2ed20061de104d5CAS | 21632431PubMed |

Klaphake V (2012) ‘Eucalypts of the Sydney Region’, 3rd edn. (Van Klaphake: Byabarra, NSW, Australia)

Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA (2012) High-density genetic linkage maps with over 2400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla. Tree Genetics & Genomes 8, 163–175.
High-density genetic linkage maps with over 2400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Humphries CJ, Brooker MIH (1987) Cladistic and biogeographic analysis of Western Australian species of Eucalyptus L’Hérit., informal subgenus Monocalyptus Pryor & Johnson. Australian Journal of Botany 35, 251–281.
Cladistic and biogeographic analysis of Western Australian species of Eucalyptus L’Hérit., informal subgenus Monocalyptus Pryor & Johnson.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Newnham MR, Humphries CJ (1989) Systematics and biogeography of the Australian ‘green ash’ eucalypts (Monocalyptus). Cladistics 5, 345–364.
Systematics and biogeography of the Australian ‘green ash’ eucalypts (Monocalyptus).Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Udovicic F, Drinnan AN (1995) Eucalypt phylogeny: molecules and morphology. Australian Systematic Botany 8, 483–497.
Eucalypt phylogeny: molecules and morphology.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Bayly MJ, Nelson GJ (2010) East–west continental vicariance in Eucalyptus subgenus Eucalyptus. In ‘Beyond Cladistics: the Branching of a Paradigm’. (Eds DM Williams, S Knapp) pp. 267–301. (University of California Press: Los Angeles, CA)

Lassak EV, Southwell IA (1982) The stem volatile leaf oils of some species of Eucalyptus subseries Strictinae. Phytochemistry 21, 2257–2261.
The stem volatile leaf oils of some species of Eucalyptus subseries Strictinae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsVSms7c%3D&md5=c3247aa715c836142071ada93499a94eCAS |

Le Quesne WJ (1974) The uniquely evolved character concept and its cladistic application. Systematic Biology 23, 513–517.
The uniquely evolved character concept and its cladistic application.Crossref | GoogleScholarGoogle Scholar |

Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate and fast distance-based phylogeny inference program. Molecular Biology and Evolution
FastME 2.0: a comprehensive, accurate and fast distance-based phylogeny inference program.Crossref | GoogleScholarGoogle Scholar | 26130081PubMed |

Lexer C, Widmer A (2008) The genic view of plant speciation: recent progress and emerging questions. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3023–3036.
The genic view of plant speciation: recent progress and emerging questions.Crossref | GoogleScholarGoogle Scholar | 18579476PubMed |

Macphail M (2007) Australian Palaeoclimates: Cretaceous to Tertiary: a review of palaeobotanical and related evidence to the year 2000. CRC LEME special volume, open file report 151. CRC LEME, Perth, WA, Australia.

Mallet J (2005) Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20, 229–237.
Hybridization as an invasion of the genome.Crossref | GoogleScholarGoogle Scholar |

McGowen MH, Wiltshire RJE, Potts BM, Vaillancourt RE (2001) The origin of Eucalyptus vernicosa, a unique shrub eucalypt. Biological Journal of the Linnean Society. Linnean Society of London 74, 397–405.
The origin of Eucalyptus vernicosa, a unique shrub eucalypt.Crossref | GoogleScholarGoogle Scholar |

McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). American Journal of Botany 86, 1038–1046.
Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVKrtLY%3D&md5=17a47fe27c87dc4b94fbbd7427f8fc57CAS | 10406727PubMed |

McKinnon GE, Vaillancourt RE, Jackson HD, Potts BM (2001) Chloroplast sharing in the Tasmanian eucalypts. Evolution 55, 703–711.
Chloroplast sharing in the Tasmanian eucalypts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktleqtLs%3D&md5=df7ac9816e98b2085779432b5d838b2eCAS | 11392388PubMed |

McKinnon GE, Jordan GJ, Vaillancourt RE, Steane DA, Potts BM (2004) Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 275–284.
Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts.Crossref | GoogleScholarGoogle Scholar | 15101583PubMed |

McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). American Journal of Botany 95, 368–380.
An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlyjs7Y%3D&md5=4928844adc66a77c3c8e782d028959f3CAS | 21632361PubMed |

McKinnon GE, Smith JJ, Potts BM (2010) Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Molecular Ecology 19, 1367–1380.
Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWhtrk%3D&md5=c808dbdb98c0c21a640cf877ed003e46CAS | 20298471PubMed |

Moran GF, Bell JC, Prober S (1990) The utility of isozymes in the systematics of some Australian tree groups. Australian Systematic Botany 3, 47–57.
The utility of isozymes in the systematics of some Australian tree groups.Crossref | GoogleScholarGoogle Scholar |

Morrison DA (2014) Phylogenetic networks: a review of methods to display evolutionary history. Annual Research & Review in Biology 4, 1518–1543.
Phylogenetic networks: a review of methods to display evolutionary history.Crossref | GoogleScholarGoogle Scholar |

Nicolle D (2015) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) Version 2. Available at http://www.dn.com.au/Classification-Of-The-Eucalypts.pdf [Verified 25 August 2015]

Ochieng JW, Henry RJ, Baverstock PR, Steane DA, Shepherd M (2007a) Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44, 752–764.
Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGgsLw%3D&md5=bcaa218c6ce89d5ccfe6a78058f7204aCAS | 17570687PubMed |

Ochieng JW, Steane DA, Ladiges PY, Baverstock PR, Henry RJ, Shepherd M (2007b) Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genetics and Molecular Biology 30, 1125–1134.
Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKrtbg%3D&md5=0642d7c1f0b18495fb548b42633c2b10CAS |

Parra-O C, Bayly M, Udovicic F, Ladiges P (2006) ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae). Taxon 55, 653–663.
ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Parra-O C, Bayly MJ, Drinnan A, Udovicic F, Ladiges P (2009) Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology. Australian Systematic Botany 22, 384–399.
Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology.Crossref | GoogleScholarGoogle Scholar |

Pole MS, Hill RS, Green N, Macphail MK (1993) The Oligocene Berwick Quarry flora: rainforest in a drying environment. Australian Systematic Botany 6, 399–427.
The Oligocene Berwick Quarry flora: rainforest in a drying environment.Crossref | GoogleScholarGoogle Scholar |

Pollock LJ, Bayly MJ, Nevill PG, Vesk PA (2013) Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia. Journal of Biogeography 40, 155–167.
Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Pollock LJ, Bayly MJ, Vesk PA (2015) The roles of ecological and evolutionary processes in plant community assembly: the environment, hybridization, and introgression influence co-occurrence of Eucalyptus. American Naturalist 185, 784–796.
The roles of ecological and evolutionary processes in plant community assembly: the environment, hybridization, and introgression influence co-occurrence of Eucalyptus.Crossref | GoogleScholarGoogle Scholar | 25996863PubMed |

Potts BM, Pederick LA (2000) Morphology, phylogeny, origin, distribution and genetic diversity of eucalypts. In ‘Diseases and Pathogens of Eucalypts’. (Eds PJ Keane, GA Kile, FD Podger, BN Brown) pp. 11–34. (CSIRO Publishing: Melbourne)

Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In ‘Eucalypt Ecology’. (Eds JE Williams, JCZ Woinarski) pp. 56–91. (Cambridge University Press: Cambridge, UK)

Prober S, Bell JC, Moran G (1990) A phylogenetic and allozyme approach to understanding rarity in three ‘green ash’ eucalypts (Myrtaceae). Plant Systematics and Evolution 172, 99–118.
A phylogenetic and allozyme approach to understanding rarity in three ‘green ash’ eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Sruro%3D&md5=e7e948b8c1dd89b3860d2208b54b842aCAS |

Pryor LD, Johnson LAS (1971) ‘A Classification of the Eucalypts.’ (The Australian National University: Canberra)

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=ebb7f79ca3abc332a555ac1fa9492884CAS | 12912839PubMed |

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Rossetto M, Lucarotti F, Hopper SD, Dixon KW (1997) DNA fingerprinting of Eucalyptus graniticola: a critically endangered relict species or a rare hybrid? Heredity 79, 310–318.
DNA fingerprinting of Eucalyptus graniticola: a critically endangered relict species or a rare hybrid?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtl2ltbk%3D&md5=f04b1c10e570da2aa91acff473c6d695CAS |

Rossetto M, Harriss FCL, Mclauchlan A, Henry RJ, Baverstock PR, Lee LS (2000) Interspecific amplification of tea tree (Melaleuca alternifolia – Myrtaceae) microsatellite loci: potential implications for conservation studies. Australian Journal of Botany 48, 367–373.
Interspecific amplification of tea tree (Melaleuca alternifolia – Myrtaceae) microsatellite loci: potential implications for conservation studies.Crossref | GoogleScholarGoogle Scholar |

Rozefelds AC (1996) Eucalyptus phylogeny and history: a brief summary. Tasforests 8, 15–26.

Sale MM, Potts BM, West AK, Reid JB (1993) Relationships within Eucalyptus using chloroplast DNA. Australian Systematic Botany 6, 127–138.
Relationships within Eucalyptus using chloroplast DNA.Crossref | GoogleScholarGoogle Scholar |

Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods 6, 16
A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus.Crossref | GoogleScholarGoogle Scholar | 20587069PubMed |

Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. African Journal of Biotechnology 5, 2540–2568.

Slee AV, Brooker MIH, Duffy SM, West JG (2006) ‘EUCLID – Eucalypts of Australia’, 3rd edn. (CD-ROM) (CSIRO Publishing: Melbourne)

Smith S, Hughes J, Wardell-Johnson G (2003) High population differentiation and extensive clonality in a rare mallee eucalypt: Eucalyptus curtisii. Conservation Genetics 4, 289–300.
High population differentiation and extensive clonality in a rare mallee eucalypt: Eucalyptus curtisii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlagsLk%3D&md5=3bb237104115b28a75d638460ed0ac68CAS |

Soltis DE, Kuzoff RK (1995) Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49, 727–742.
Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae).Crossref | GoogleScholarGoogle Scholar |

Steane DA, Byrne M, Vaillancourt RE, Potts BM (1998) Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Australian Systematic Botany 11, 25–40.
Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Steane DA, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
ITS sequence data resolve higher level relationships among the eucalypts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFWrsbk%3D&md5=574381dedb74ecead617ecba3ce0a392CAS | 10381324PubMed |

Steane DA, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62.
Higher-level relationships among the eucalypts are resolved by ITS-sequence data.Crossref | GoogleScholarGoogle Scholar |

Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular Phylogenetics and Evolution 59, 206–224.
Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping.Crossref | GoogleScholarGoogle Scholar | 21310251PubMed |

Thornhill AH, Macphail M (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: a review of fossil Myrtaceidites species. Review of Palaeobotany and Palynology 176–177, 1–23.
Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: a review of fossil Myrtaceidites species.Crossref | GoogleScholarGoogle Scholar |

Turak E, Marchant R, Barmuta LA, Davis J, Choy S, Metzeling L (2011) River conservation in a changing world: invertebrate diversity and spatial prioritisation in south-eastern coastal Australia. Marine and Freshwater Research 62, 300–311.
River conservation in a changing world: invertebrate diversity and spatial prioritisation in south-eastern coastal Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKktr4%3D&md5=9c5b0249cd84cd8487d5df1dad3e59feCAS |

Udovicic F, Ladiges PY (2000) Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae). Kew Bulletin 55, 633–645.
Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Udovicic F, McFadden GI, Ladiges PY (1995) Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data. Molecular Phylogenetics and Evolution 4, 247–256.
Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFShtbY%3D&md5=e53c8464273ed00bc9345ec6a4c696e0CAS | 8845962PubMed |

Wang H, Sun D, Sun G (2011) Molecular phylogeny of diploid Hordeum species and incongruence between chloroplast and nuclear datasets. Genome 54, 986–992.
Molecular phylogeny of diploid Hordeum species and incongruence between chloroplast and nuclear datasets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFCrsQ%3D%3D&md5=3a353d496b79ad977922276ff4fd5efdCAS | 22085287PubMed |

Whittock S, Steane DA, Vaillancourt RE, Potts BM (2003) Molecular evidence shows that the tropical boxes (Eucalyptus subgenus Minutifructus) are over-ranked. Transactions of the Royal Society of South Australia 127, 27–32.

Wilson PG (2011) Myrtaceae. In ‘The Families and Genera of Vascular Plants. Vol. 10. Flowering Plants Eudicots’. (Ed. K Kubitzki) pp. 212–271. (Springer-Verlag: Berlin)

Woodhams M, Steane DA, Jones RC, Nicolle D, Moulton V, Holland BR (2013) Novel distances for Dollo data. Systematic Biology 62, 62–77.
Novel distances for Dollo data.Crossref | GoogleScholarGoogle Scholar | 22914977PubMed |

Wu C-I (2001) The genic view of the process of speciation. Journal of Evolutionary Biology 14, 851–865.
The genic view of the process of speciation.Crossref | GoogleScholarGoogle Scholar |

Yeoh SH, Ho SYW, Thornhill AH, Foley WJ (2013) Regional population expansion in Eucalyptus globulus. Molecular Phylogenetics and Evolution 68, 498–501.
Regional population expansion in Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar | 23643971PubMed |

Yu W-B, Huang P-H, Li D-Z, Wang H (2013) Incongruence between nuclear and chloroplast DNA phylogenies in Pedicularis section Cyathophora (Orobanchaceae). PLoS One 8, e74828
Incongruence between nuclear and chloroplast DNA phylogenies in Pedicularis section Cyathophora (Orobanchaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFeiurnJ&md5=533586351efe715f993b17e332043882CAS | 24069353PubMed |