Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Karyosystematics of the Australasian stipoid grass Austrostipa and related genera: chromosome sizes, ploidy, chromosome base numbers and phylogeny

Grit Winterfeld A D , Julia Schneider A , Hannes Becher B , John Dickie C and Martin Röser A
+ Author Affiliations
- Author Affiliations

A Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, D-06108 Halle (Saale), Germany.

B School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.

C Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place Ardingly, Haywards Heath, West Sussex, RH176TN, United Kingdom.

D Corresponding author. Email: gwinterfeld@gmx.net

Australian Systematic Botany 28(3) 145-159 https://doi.org/10.1071/SB14029
Submitted: 3 September 2014  Accepted: 22 July 2015   Published: 13 November 2015

Abstract

Mitotic metaphase chromosomes were counted in 29 taxa, representing 11 subgenera of Austrostipa, and in 11 species from nine related genera of the grass subfamily Pooideae. Karyotype features were also measured. The cytogenetic data were mapped on molecular phylogenetic trees based on nuclear ITS and plastid 3ʹtrnK DNA sequence data. The trees showed four different main lineages within Austrostipa, but supported only two of the 13 acknowledged subgenera. The phylogenetic positions of the genera Anemanthele, Achnatherum, Nassella and Oloptum indicated paraphyly of the genus Austrostipa. In nuclear-sequence data, Anemanthele was nested within Austrostipa; however, in plastid-sequence data, both were sisters. The newly obtained chromosome counts in Austrostipa showed that most species have 2n = 44, the other 2n = 66. Presuming a chromosome base number of x = 11, the counts corresponded with ploidy levels of 4x and 6x respectively. Karyotype data of Austrostipa and Anemanthele were very similar. Chromosome counting in further genera suggested chromosome base numbers of x = 9, 10, 11, 12 and 13. Chromosome sizes of the phylogenetically derived tribe Stipeae were smaller than those of the earliest diverging Pooideae lineages Nardeae, Meliceae and Phaenospermateae. The mechanisms of chromosome evolution and the origin of the considerable variation in chromosome base numbers in the subfamily Pooideae are discussed in the context of chromosome evolution and biosystematics.

Additional keywords: cytogenetics, ITS, karyotype, matK, Poaceae, polyploidy, Pooideae, Stipeae.


References

Avdulov NP (1931) Karyo-systematische Untersuchung der Familie Gramineen. Trudy po Prikladnoi Botanike, Genetike i Selektsii 43, 1–428.

Barkworth ME, Arriaga MO, Smith JF, Jacobs SWL, Valdes-Reyna J, Bushman BS (2008) Molecules and morphology in South American Stipeae (Poaceae). Systematic Botany 33, 719–731.
Molecules and morphology in South American Stipeae (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques 27, 1180–1186.

Blattner FR, Weising K, Baenfer G, Maschwitz U, Fiala B (2001) Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). Molecular Phylogenetics and Evolution 19, 331–344.
Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1SgtL8%3D&md5=9c86372a9e99a54b4e0dd2c36c02910cCAS | 11399144PubMed |

Bolkhovskikh Z, Grif V, Matvejeva T, Zakharyeva O (1969) ‘Chromosome Numbers of Flowering Plants.’ (Ed. A Fedorov) (Nauka: Leningrad)

Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Van der Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Molecular Phylogenetics and Evolution 47, 488–505.
Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKlu7o%3D&md5=53e93a9ff77efe505879ba1b80f4363fCAS | 18358746PubMed |

Brassac J, Jakob SS, Blattner FR (2012) Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region. PLoS One 7, e33808
Progenitor-derivative relationships of Hordeum polyploids (Poaceae, Triticeae) inferred from sequences of TOPO6, a nuclear low-copy gene region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlsl2ksLo%3D&md5=d67540d3f00b6f739b8d4f412548fcdeCAS | 22479447PubMed |

Bustam BM (2010) Systematic studies of Australian stipoid grasses (Austrostipa) based on micro-morphological and molecular characteristics. Biodiversitas 11, 9–14.
Systematic studies of Australian stipoid grasses (Austrostipa) based on micro-morphological and molecular characteristics.Crossref | GoogleScholarGoogle Scholar |

Cialdella AM, Salariato DL, Aagesen L, Giussani LM, Zuloaga FO, Morrone O (2010) Phylogeny of New World Stipeae (Poaceae): an evaluation of the monophyly of Aciachne and Amelichloa. Cladistics 26, 563–578.
Phylogeny of New World Stipeae (Poaceae): an evaluation of the monophyly of Aciachne and Amelichloa.Crossref | GoogleScholarGoogle Scholar |

Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends in Genetics 21, 673–682.
Chromosome evolution in eukaryotes: a multi-kingdom perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1egsrbI&md5=c8d1fa8cb96452055a2549f39aaa4517CAS | 16242204PubMed |

Davis JI, Soreng RJ (2007) A preliminary phylogenetic analysis of the grass subfamily Pooideae (Poaceae), with attention to structural features of the plastid and nuclear genomes, including an intron loss in GBSSI. Aliso 23, 335–348.
A preliminary phylogenetic analysis of the grass subfamily Pooideae (Poaceae), with attention to structural features of the plastid and nuclear genomes, including an intron loss in GBSSI.Crossref | GoogleScholarGoogle Scholar |

Dawson MI, Beuzenberg EJ (2000) Contributions to a chromosome atlas of the New Zealand flora. New Zealand Journal of Botany 38, 1–23.
Contributions to a chromosome atlas of the New Zealand flora.Crossref | GoogleScholarGoogle Scholar |

De Wet JMJ (1987) Hybridization and polyploidy in the Poaceae. In ‘Grass Systematics and Evolution’. (Eds TR Soderstrom, KW Hilu, CS Campbell, ME Barkworth) pp. 188–194. (Smithsonian Institution Press: Washington, DC)

Decker HF (1964) Affinities of the grass genus Ampelodesmos. Brittonia 16, 76–79.
Affinities of the grass genus Ampelodesmos.Crossref | GoogleScholarGoogle Scholar |

Devesa JA, Ruiz T, Viera MC, Tormo R, Vázquez F, Carrasco JP, Ortega A, Pastor J (1991) Contribución al conocimiento cariológico de las Poaceae en Extremadura (España) III. Boletim da Sociedade Broteriana sér. 2 64, 35–74.

Döring E (2009). Molekulare Phylogenie der Hafer-Gräser (Poaceae: Pooideae: Aveneae). PhD dissertation, Halle/Saale, Martin Luther University Halle-Wittenberg. Available at http://digital.bibliothek.uni-halle.de/hs/content/titleinfo/177571 [Verified 14 September 2015]

Döring E, Schneider J, Hilu KW, Röser M (2007) Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). Kew Bulletin 62, 407–424.

Duckert-Henriod MM (1991) Mediterranean chromosome number reports 1 (7–25). Flora Mediterranea 1, 229–236.

Eckardt NA (2008) Grass genome evolution. The Plant Cell 20, 3–4.
Grass genome evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCgtrc%3D&md5=06139219685861bdab338aab6f123a9fCAS |

Everett J, Jacobs SWL, Nairn L (2009) Austrostipa. In ‘Flora of Australia, vol. 44A. Poaceae 2’. (Ed. A Wilson) pp. 15–62. (CSIRO: Melbourne)

Faruqi SA, Quraish HB, Inamuddin M (1987) Studies in Libyan grasses. X. Chromosome number and some interesting features. Annals of Botany 45, 75–102.

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Freitag H (1975) The genus Piptatherum (Gramineae) in southwest Asia. Notes from the Royal Botanic Garden Edinburgh 3, 341–408.

Freitag H (1985) The genus Stipa (Gramineae) in Southwest and South Asia. Notes from the Royal Botanic Garden Edinburgh 42, 355–489.

Goldblatt P (1984) Index to plant chromosome numbers, 1979–1981. Monographs in Systematic Botany from the Missouri Botanical Garden 8, 1–427.

Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden 88, 373–457.
Phylogeny and subfamilial classification of the grasses (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Greilhuber J, Weber A (1975) Aneusomaty in Orobanche gracilis. Plant Systematics and Evolution 124, 67–77.
Aneusomaty in Orobanche gracilis.Crossref | GoogleScholarGoogle Scholar |

Groves RH, Whalley RDB (2002) Grass and grassland ecology in Australia. In ‘Flora of Australia. Vol 43. Poaceae 1’. (Eds K Mallet, AE Orchard) pp. 157–182. (ABRS: Canberra; and CSIRO: Melbourne)

Hamasha HR, von Hagen KB, Röser M (2012) Stipa (Poaceae) and allies in the Old World: molecular phylogenetic realigns genus circumscription and gives evidence on the origin of American and Australian lineages. Plant Systematics and Evolution 298, 351–367.
Stipa (Poaceae) and allies in the Old World: molecular phylogenetic realigns genus circumscription and gives evidence on the origin of American and Australian lineages.Crossref | GoogleScholarGoogle Scholar |

Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Australian Journal of Botany 52, 13–22.
Phylogenetics and chromosomal evolution in the Poaceae (grasses).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1ahtrw%3D&md5=884e1596d84f829d9f18ee2b8269513aCAS |

Hsiao C, Jacobs SWL, Chatterton NJ, Asay KH (1999) A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS). Australian Systematic Botany 11, 667–688.
A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS).Crossref | GoogleScholarGoogle Scholar |

Jacobs SWL, Everett J (1996) Austrostipa, a new genus, and new names for Australasian species formerly included in Stipa (Gramineae). Telopea 6, 579–595.
Austrostipa, a new genus, and new names for Australasian species formerly included in Stipa (Gramineae).Crossref | GoogleScholarGoogle Scholar |

Jacobs SWL, Everett J, Connor HE, Edgar E (1989) Stipoid grasses in New Zealand. New Zealand Journal of Botany 27, 569–582.
Stipoid grasses in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Jacobs SWL, Everett J, Barkworth ME, Hsiao C (2000) Relationships within the Stipeae (Gramineae). In ‘Grasses: Systematics and Evolution’. (Eds SWL Jacobs, J Everett) pp. 75–82. (CSIRO Publishing: Melbourne)

Jacobs SWL, Bayer R, Everett J, Arriaga MO, Barkworth ME, Sabin-Badereau A, Torres MA, Vazquez FM, Bagnall N (2007) Systematics of the tribe Stipeae (Gramineae) using molecular data. Aliso 23, 349–361.
Systematics of the tribe Stipeae (Gramineae) using molecular data.Crossref | GoogleScholarGoogle Scholar |

Joachimiak A, Kula A, Śliwínka E, Sobieszczanska A (2001) C-banding and nuclear DNA amount in six Bromus species. Acta Biologica Cracoviensia, Series Botanica 43, 105–115.

Johnson BL (1945) Cytotaxonomic studies in Oryzopsis. Botanical Gazette 107, 1–32.
Cytotaxonomic studies in Oryzopsis.Crossref | GoogleScholarGoogle Scholar |

Johnson LA, Soltis DE (1994) MatK DNA sequences and phylogenetic reconstruction in Saxifragaceae s.str. Systematic Botany 19, 143–156.
MatK DNA sequences and phylogenetic reconstruction in Saxifragaceae s.str.Crossref | GoogleScholarGoogle Scholar |

Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Garden 82, 149–175.
Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences.Crossref | GoogleScholarGoogle Scholar |

Krasnikov AA (1991) Chromosome numbers in some species of vascular plants from Novosibirsk region. Botanicheskii Zhurnal 76, 476–479.

Kula A (1999) Cytogenetic studies in the cultivated form of Bromus carinatus (Poaceae). Fragmenta Floristica et Geobotanica Polonica 7, 101–106.

Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiology 130, 1587–1593.
The impact of polyploidy on grass genome evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlak&md5=a2834b9ccd912c7c4f3f6d490c2e1303CAS | 12481041PubMed |

Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo HY, Huo N, Lazo G, Ma Y, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proceedings of the National Academy of Sciences of the United States of America 106, 15780–15785.
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyjsLbJ&md5=203bf92ae34e3d1ac1982cce1f08c9b2CAS | 19717446PubMed |

Luque T, Diaz Lifante Z (1991) Chromosome numbers of plants collected during Iter Mediterraneum I in the SE of Spain. Bocconea 1, 303–364.

Macfarlane TD, Watson L (1980) The circumscription of Poaceae subfamily Pooideae, with notes on some controversial genera. Taxon 29, 645–666.
The circumscription of Poaceae subfamily Pooideae, with notes on some controversial genera.Crossref | GoogleScholarGoogle Scholar |

Martinovský JO (1980) Stipa L. In ‘Flora europaea, vol. 5. Alismataceae to Orchidaceae (Monocotyledones)’. (Eds TG Tutin, VH Heywood, NA Burges, DM Moore, DH Valentine, SM Walters, DA Webb) pp. 247–252. (Cambridge University Press: Cambridge, UK)

Mishiba K, Mii M (2000) Polysomaty analysis in diploid and tetraploid Portulaca grandiflora. Plant Science 156, 213–219.
Polysomaty analysis in diploid and tetraploid Portulaca grandiflora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFCjtro%3D&md5=ab53e0d295bb635abe41703a73b488faCAS | 10936528PubMed |

Murat F, Jian-Hong X, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Research 20, 1545–1557.
Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGqu7zE&md5=9e60b73ce967446c53f00d2e45954483CAS | 20876790PubMed |

Murray BG, de Lange PJ, Ferguson AR (2005) Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Annals of Botany 96, 1293–1305.
Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFOqtg%3D%3D&md5=087c98847d7a415965ebdaef0b3c052aCAS | 16243852PubMed |

Nylander JAA (2004) ‘MrModeltest v2.’ (Program distributed by the author, Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden)

Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences of the United States of America 101, 9903–9908.
Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVahtbY%3D&md5=e8a3216d9ad89089459e554a8ba6c036CAS | 15161969PubMed |

Pietro RD, D’Amato G, Trombetta B (2003) Karyology and distribution of Sesleria tenuifolia complex (Poaceae) in the Italian Peninsula. Nordic Journal of Botany 23, 615–623.
Karyology and distribution of Sesleria tenuifolia complex (Poaceae) in the Italian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Probatova NS, Sokolovskaya AP (1980) A karyotaxonomic study of the grasses of the Altai Mts. Botanicheskii Zhurnal 65, 509–520.

Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Futorna O, Susanna A (2008) Molecular phylogenetic analysis of the American Stipeae (Poaceae) resolves Jarava sensu lato polyphyletic: evidence for a new genus, Pappostipa. Journal of the Botanical Research Institute of Texas 2, 165–192.

Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Susanna A (2010) Phylogenetics of Stipeae (Poaceae: Pooideae) based on plastid and nuclear DNA sequences. In ‘Diversity, Phylogeny, and Evolution in the Monocotyledons’. (Eds O Seberg, G Petersen, AS Barfod, JI Davis) pp. 513–539. (Aarhus University Press: Aarhus, Denmark)

Romaschenko K, Peterson PM, Soreng RJ, Futorna O, Susanna A (2011) Phylogenetics of Piptatherum s.l. (Poaceae: Stipeae): evidence for a new genus, Piptatheropsis, and resurrection of Patis. Taxon 60, 1703–1716.

Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Futorna O, Susanna A (2012) Systematics and evolution of the needle grasses (Poaceae: Pooideae: Stipeae) based on analysis of multiple chloroplast loci, ITS, and lemma micromorphology. Taxon 61, 18–44.

Romaschenko K, Garcia-Jacas N, Peterson PM, Soreng RJ, Vilatersana R, Susanna A (2014) Miocene–Pliocene speciation, introgression, and migration of Patis and Ptilagrostis (Poaceae: Stipeae). Molecular Phylogenetics and Evolution 70, 244–259.
Miocene–Pliocene speciation, introgression, and migration of Patis and Ptilagrostis (Poaceae: Stipeae).Crossref | GoogleScholarGoogle Scholar | 24096057PubMed |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=41bced8ea81c55798727300505ccc162CAS | 12912839PubMed |

Ronquist F, Huelsenbeck J, Teslenko M (2011) Draft MrBayes version 3.2 manual: tutorials and model summaries. MrBayes: Bayesian Inference of Phylogeny. Available at http://mrbayes.sourceforge.net/manual.php [Verified 15 November 2011]

Rudyka EG (1990) Chromosome numbers of vascular plants from the various regions of the USSR. Botanicheskii Zhurnal 75, 1783–1786.

Schneider J, Döring E, Hilu KW, Röser M (2009) Phylogenetic structure of the grass subfamily Pooideae based on comparison of plastid matK gene–3ʹtrnK exon and nuclear ITS sequences. Taxon 58, 405–424.

Schneider J, Winterfeld G, Hoffmann M, Röser M (2011) Duthieeae, a new tribe of grasses (Poaceae) identified among the early diverging lineages of subfamily Pooideae: molecular phylogenetics, morphological delineation, cytogenetics, and biogeography. Systematics and Biodiversity 9, 27–44.
Duthieeae, a new tribe of grasses (Poaceae) identified among the early diverging lineages of subfamily Pooideae: molecular phylogenetics, morphological delineation, cytogenetics, and biogeography.Crossref | GoogleScholarGoogle Scholar |

Schneider J, Winterfeld G, Röser M (2012) Polyphyly of the grass tribe Hainardieae (Poaceae: Pooideae): identification of its different lineages based on molecular phylogenetics, including morphological and cytogenetic characteristics. Organisms, Diversity & Evolution 12, 113–132.
Polyphyly of the grass tribe Hainardieae (Poaceae: Pooideae): identification of its different lineages based on molecular phylogenetics, including morphological and cytogenetic characteristics.Crossref | GoogleScholarGoogle Scholar |

Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Systematics and Evolution 134, 293–297.
Application of Giemsa banding to orchid karyotype analysis.Crossref | GoogleScholarGoogle Scholar |

Smulders MJM, Rus-Kortekaas W, Gilissen LJW (1994) Development of polysomaty during differentiation in diploid and tetraploid tomato (Lycopersicon esculentum) plants. Plant Science 97, 53–60.
Development of polysomaty during differentiation in diploid and tetraploid tomato (Lycopersicon esculentum) plants.Crossref | GoogleScholarGoogle Scholar |

Soreng RJ, Davidse G, Peterson PM, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Morrone O, Romaschenko K (2014) A world-wide phylogenetic classification of Poaceae (Gramineae). Version 5 April 2014. Available at http://www.tropicos.org/docs/meso/CLASSIFICATION%20OF%20world%20grasses%202013%20Oct%2029%20%282%29fZedits%20April%205%202014.htm [Verified 17 July 2014]

Stepanov NV (1994) Chromosome numbers of some higher plants taxa of the flora of Krasnoyarsk region. Botanicheskii Zhurnal 79, 135–139.

Swofford DL (2002) ‘PAUP*: Phylogenetic Analysis using Parsimony (*and Other Methods), Version 4.0b10.’ (Sinauer Associates: Sunderland, MA)

Syme AE (2012) Diversification rates in the Australasian endemic grass Austrostipa: 15 million years of constant evolution. Plant Systematics and Evolution 298, 221–227.
Diversification rates in the Australasian endemic grass Austrostipa: 15 million years of constant evolution.Crossref | GoogleScholarGoogle Scholar |

Syme AE, Murphy DJ, Holmes GD, Gardner S, Fowler R, Cantrill DJ (2012) An expanded phylogenetic analysis of Austrostipa (Poaceae: Stipeae) to test infrageneric relationships. Australian Systematic Botany 25, 1–10.
An expanded phylogenetic analysis of Austrostipa (Poaceae: Stipeae) to test infrageneric relationships.Crossref | GoogleScholarGoogle Scholar |

Tzvelev NN (1976) ‘Zlaki SSSR.’ (Nauka Publishers: Leningrad)

Verlaque R, Reynaud C, Aboucaya A (1997) Mediterranean chromosome number reports 7 (843–854). Flora Mediterranea 7, 240–246.

Vickery JW, Jacobs SWL, Everett J (1986) Taxonomic studies in Stipa (Poaceae) in Australia. Telopea 3, 1–132.
Taxonomic studies in Stipa (Poaceae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Waters CM, Melville GJ, Jacobs SWL (2009) Association of five Austrodanthonia species (family Poaceae) with large and small scale environmental features in central western New South Wales. Cunninghamia 11, 65–80.

Waters CM, Murray BG, Melville GJ, Coates DJ, Young A, Virgona J (2010) Polyploidy and possible implications for the evolutionary history of some Australian Danthonieae. Australian Journal of Botany 58, 23–34.
Polyploidy and possible implications for the evolutionary history of some Australian Danthonieae.Crossref | GoogleScholarGoogle Scholar |

Waters CM, Melville GJ, Coates DJ, Virgona J, Young A, Hacker RB (2011) Variation in morphological traits among and within populations of Austrodanthonia caespitosa (Gaudich.) H.P.Linder and four related species. Australian Journal of Botany 59, 324–335.
Variation in morphological traits among and within populations of Austrodanthonia caespitosa (Gaudich.) H.P.Linder and four related species.Crossref | GoogleScholarGoogle Scholar |

Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLOS Genetics 3, e123
Physical and genetic structure of the maize genome reflects its complex evolutionary history.Crossref | GoogleScholarGoogle Scholar | 17658954PubMed |

Whalley RDB, Chivers IH, Waters CM (2013) Revegetation with Australian native grasses: a reassessment of the importance of using local provenances. The Rangeland Journal 35, 155–166.
Revegetation with Australian native grasses: a reassessment of the importance of using local provenances.Crossref | GoogleScholarGoogle Scholar |

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: a Guide to Methods and Applications’. (Eds MA Innis, DH Gelfand, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: New York)

Winterfeld G, Döring E, Röser M (2009a) Chromosome evolution in wild oat grasses (Aveneae) revealed by molecular phylogeny. Genome 52, 361–380.
Chromosome evolution in wild oat grasses (Aveneae) revealed by molecular phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Gmtrw%3D&md5=4d0c1d7a101993c70389277b6cca6a7cCAS | 19370092PubMed |

Winterfeld G, Schneider J, Röser M (2009b) Allopolyploid origin of Mediterranean species in Helictotrichon (Poaceae) and its consequences for karyotype repatterning and homogenization of rDNA repeat units. Systematics and Biodiversity 7, 277–295.
Allopolyploid origin of Mediterranean species in Helictotrichon (Poaceae) and its consequences for karyotype repatterning and homogenization of rDNA repeat units.Crossref | GoogleScholarGoogle Scholar |

Wu Z, Phillips SM (2006) Stipeae. In ‘Flora of China, vol. 22. Poaceae’. (Eds Z Wu, PH Raven, DY Hong) pp. 188–212. (Missouri Botanical Garden Press: St Louis)