Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Species delimitations in the Campomanesia xanthocarpa group (Myrtaceae): insights from molecular markers and taxonomy

Marla Ibrahim Uehbe de Oliveira https://orcid.org/0000-0001-8034-6068 A * , João Paulo Silva Vieira B , Cássio van den Berg B , Ligia Silveira Funch B and Reyjane Patrícia de Oliveira B
+ Author Affiliations
- Author Affiliations

A Departamento de Biologia, Universidade Federal de Sergipe, UFS, Cidade Universitária Prof. José Aloísio de Campos, Avenida Marcelo Déda Chagas s/n, Bairro Jardim Rosa Elze, São Cristóvão, Sergipe, 49107-230, Brazil.

B Departamento de Ciências Biológicas, Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, UEFS, Avenida Transnordestina, s/n, Bairro Novo Horizonte, Feira de Santana, Bahia, 44036-900, Brazil.

* Correspondence to: marlauehbe@yahoo.com.br

Handling Editor: Russell Barrett

Australian Systematic Botany 37, SB23032 https://doi.org/10.1071/SB23032
Submitted: 30 November 2023  Accepted: 23 August 2024  Published: 16 October 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Different views on recognising taxa associated with the Campomanesia xanthocarpa group (Myrtaceae) demonstrate the difficulties in clearly delimiting species. Studies using Inter Simple Sequence Repeats (ISSR) molecular markers were carried out on 201 individuals from 13 populations of C. xanthocarpa Mart. ex O.Berg, C. adamantium (Cambess.) O.Berg, C. costata M.Ibrahim & Landrum and C. littoralis D.Legrand in an attempt to improve understanding of species boundaries between these species. SplitsTree, analysis of molecular variance (AMOVA), principal component analysis (PCA), Neighbour-Joining (NJ) dendrogram and STRUCTURE showed inconsistencies between morphological and genetic data in these taxa. Therefore C. adamantium and C. xanthocarpa are treated as distinct taxa in this study, as are C. costata, C. littoralis and C. rhombea O.Berg that were previously considered part of C. xanthocarpa. Structured populations in C. adamantium were not congruent with taxonomic data or poorly supported in the data analysed. These were maintained as a single polymorphic species and new integrative approaches are necessary to improve understanding of taxon boundaries. We present a taxonomic treatment based on these decisions. This study contributes to the systematic treatment of Campomanesia and encourages specific delimitation studies to resolve remaining taxonomic issues within the genus.

Keywords: botanical nomenclature, Brazil, genetic structure, ISSR markers, Myrteae, Pimentinae, population variability, taxonomy.

References

Berg OK (1856) Myrtaceae. In ‘Linnaea, v. 27’. (Ed. DFL Schlechtendal) pp. 1–440. (M. Bruhn in Braunschweig: Halle, German Confederation) [In German and Latin]

Berg OK (1857) Myrtaceae. In ‘Flora Brasiliensis, v.14’. (Ed. CFP Martius) p. 1. (F. Fleischer: Monachii & Lipsiae) [In Latin]

Bernardes CO, Tuler AC, Canal D, Carvalho MS, Ferreira A, da Silva Ferreira MF (2022) Genetic diversity and population structure of psidium species from restinga: a coastal and disturbed ecosystem of the Brazilian Atlantic Forest. Biochemical Genetics 60, 2503-2514.
| Crossref | Google Scholar | PubMed |

Boylan J, La Valle F, Kang Y (2009) Determination of genetic relationships among populations of Asclepias tuberosa (Asclepiadaceae) based on ISSR polymorphisms. BIOS 80, 25-34.
| Crossref | Google Scholar |

Brandão MM, Vieira FDA, Carvalho DD (2011) Estrutura genética em microescala espacial de Myrcia splendens (Myrtaceae). Revista Árvore 35(5), 957-964 [In Portuguese].
| Crossref | Google Scholar |

Briggs BG, Johnson LAS (1979) Evolution in Myrtaceae – evidence from inflorescence structure. Proceedings of the Linnean Society of the New South Wales 102(4), 158-256.
| Google Scholar |

Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. BioTechniques 36, 214-216.
| Crossref | Google Scholar | PubMed |

Bryant D, Huson DH (2023) NeighborNet – improved algorithms and implementation. Frontiers in Bioinformatics 3, 1178600.
| Crossref | Google Scholar | PubMed |

Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21, 255-265.
| Crossref | Google Scholar | PubMed |

Butcher PA, Otero A, McDonald MW, Moran GF (2002) Nuclear RFLP variation in Eucalyptus camaldulensis Dehnh. from northern Australia. Heredity 88, 402-412.
| Crossref | Google Scholar | PubMed |

Byrne M, Parrish TL, Moran GF (1998) Nuclear RFLP diversity in Eucalyptus nitens. Heredity 81, 225-233.
| Crossref | Google Scholar |

Cambessèdes J (1832) Myrtaceae. In ‘Flora Brasilieae Meridionalis v. 2’. (Eds AFCP Saint-Hilaire, AHL Jussie, J Cambessedes) pp. 277–292. (Paris apud A. Belin Bibliopolam, via dicta des Mathurins) [In Latin]

Cook IO, Ladiges PY (1998) Isozyme variation in Eucalyptus nitens and E. denticulata. Australian Journal of Botany 46, 35-44.
| Crossref | Google Scholar |

de Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879-886.
| Crossref | Google Scholar | PubMed |

Doyle JJ, Doyle JL (1987) A rapid DNA isolation method for small quantities of fresh tissues. Phytochemical Bulletin 19, 11-15.
| Google Scholar |

Duminil J, Di Michele M (2009) Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosystems 143, 528-542.
| Crossref | Google Scholar |

Duminil J, Kenfack D, Viscosi V, Grumiau L, Hardy OJ (2012) Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae). Molecular Phylogenetics and Evolution 62, 275-285.
| Crossref | Google Scholar | PubMed |

Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359-361.
| Crossref | Google Scholar |

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611-2620.
| Crossref | Google Scholar | PubMed |

Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.
| Crossref | Google Scholar | PubMed |

Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore JS, Moyers BT, Renaut S, Rennison DJ, Veen T, Vines TH (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Molecular Ecology 21, 4925-4930.
| Crossref | Google Scholar | PubMed |

Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3–4), 325-338.
| Crossref | Google Scholar |

Grant V (1981) ‘Plant speciation’, 2nd edn. (Columbia University Press: New York, NY, USA)

Hamming RW (1950) Error detecting and error correcting codes. Bell System Technical Journal 29, 147-160.
| Crossref | Google Scholar |

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254-267.
| Crossref | Google Scholar | PubMed |

Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL (2017) The K = 2 conundrum. Molecular Ecology 26, 3594-3602.
| Crossref | Google Scholar | PubMed |

Joly S, Stevens MI, van Vuuren BJ (2007) Haplotype networks can be misleading in the presence of missing data. Systematic Biology 56, 857-862.
| Crossref | Google Scholar | PubMed |

Knowles LL, Carstens BC (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887-895.
| Crossref | Google Scholar | PubMed |

Landrum LR (1986) Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium and Luma (Myrtaceae). Flora Neotropica Monographs 45, 7-72.
| Google Scholar |

Landrum LR, Kawasaki ML (1997) The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49, 508-536.
| Crossref | Google Scholar |

Legrand CD, Klein RM (1977) Mirtáceas – Campomanesia, Feijoa, Britoa, Myrrhinium, Hexaclamys, Siphoneugena, Myrcianthes, Neomitranthes e Psidium. In ‘Flora Ilustrada Catarinense, Parte I, As plantas, fasc. Mirt.’. (Ed. PR Reitz) pp. 573–634. (Conselho Nacional de Desenvolvimento Científico e Tecnológico/Instituto Brasileiro de Desenvolvimento Florestal/Herbario Barbosa Rodrigues: Itajaí, Brazil) [In Portuguese]

Lima DF, Goldenberg R, Sobral M (2011) O gênero Campomanesia (Myrtaceae) no estado do Paraná. Rodriguésia 62, 683-693 [In Portuguese].
| Crossref | Google Scholar |

Lima DFS, Mauad AVS, Silva-Pereira V, Smidt EC, Goldenberg R (2015) Species boundaries inferred from ISSR markers in the Myrcia laruotteana complex (Myrtaceae). Plant Systematics and Evolution 301, 353-363.
| Crossref | Google Scholar |

Luber J, Christ JA, Ferreira MFS, Carrijo TT (2020) Species delimitation within Campomanesia (Myrtaceae) using morphology and amplification profiles of microsatellite markers. Brazilian Journal of Botany 43, 131-137.
| Crossref | Google Scholar |

Luber J, Oliveira MIU, Ferreira MFDS, Carrijo TT (2017) Flora do Espírito Santo: Campomanesia (Myrtaceae). Rodriguésia 68(5), 1767-1790 [In Portuguese].
| Crossref | Google Scholar |

Lucas EJ, Harris SA, Mazine FF, Belsham SR, Nic Lughadha EM, Telford A, Gasson PE, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56, 1105-1128.
| Crossref | Google Scholar |

McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). American Journal of Botany 95, 368-380.
| Crossref | Google Scholar | PubMed |

Morais PO, Lombardi JA (2006) A família Myrtaceae na Reserva Particular do Patrimônio Natural da Serra do Caraça, Catas Altas, Minas Gerais, Brasil. Lundiana 7, 3-32 [In Portuguese].
| Crossref | Google Scholar |

Mori AS, Silva LAM, Lisboa G, Coradin L (1989) ‘Manual de manejo do herbário fanerogâmico’, 2 edn. (Centro de Pesquisas do Cacau: Ilhéus, Brazil) [In Portuguese]

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583-590.
| Crossref | Google Scholar | PubMed |

Okun DO, Kenya EU, Oballa PO, Odee DW, Muluvi GM (2008) Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. African Journal Biotechnology 7, 2119-2123.
| Google Scholar |

Oliveira MIU, Funch LS, Landrum LR (2012) Flora da Bahia: Campomanesia (Myrtaceae). Sitientibus Série Ciências Biológicas 12, 91-107 [In Portuguese].
| Crossref | Google Scholar |

Oliveira MIU, Landrum LR, Oliveira RP, Funch LS (2013) A new species of Campomanesia (Myrtaceae) from Bahia, Brazil, and its relationships with the C. xanthocarpa complex. Phytotaxa 149, 19-26.
| Crossref | Google Scholar |

Oliveira MIU, Rebouças DA, Leite KRB, Oliveira RP, Funch LS (2018) Can leaf morphology and anatomy contribute to species delimitation? A case in the Campomanesia xanthocarpa complex (Myrtaceae). Flora 249, 111-123.
| Crossref | Google Scholar |

Oliveira MIU, Vieira JP, van den Berg C, Funch LS, Oliveira RP (2021) Understanding molecular relationships in Campomanesia Ruiz & Pav. (Myrtaceae): emphasizing the C. xanthocarpa complex based on multiple accessions. Brazilian Journal of Botany 44, 917-927.
| Crossref | Google Scholar |

Oliveira MIU, Costa IR, Proença CEB (2023) Campomanesia Ruiz et Pav. In ‘Flora e Funga do Brasil’. (Jardim Botânico do Rio de Janeiro) Available at https://floradobrasil.jbrj.gov.br/FB10307 [Verified 10 February 2023]

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537-2539.
| Crossref | Google Scholar | PubMed |

Pignal M, Romaniuc-Neto S, De Souza S, Chagnoux S, Lange Canhos DA (2013) Saint-Hilaire virtual herbarium, a new upgradeable tool to study Brazilian botany. Adansonia 35, 7-18.
| Crossref | Google Scholar |

Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu MV (2013) An overview of STRUCTURE: applications, parameter, settings, and supporting software. Frontiers in Genetics 4, 98.
| Crossref | Google Scholar | PubMed |

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
| Crossref | Google Scholar | PubMed |

Pritchard JK, Wen W, Falush D (2010) ‘Documentation for STRUCTURE software: version 2.’ (University of Chicago: Chicago, IL, USA)

Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128, 9-17.
| Crossref | Google Scholar |

Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43, 1349-1368.
| Crossref | Google Scholar | PubMed |

Sobral M (2003) ‘A família Myrtaceae no Rio Grande do Sul.’ (Editora Unisinos: São Leopoldo, Brazil) [In Portuguese]

Stace CA (1989) ‘Plant taxonomy and biosystematics’, 2nd edn. (University of Cambridge: New York, NY, USA)

Staggemeier VG, Diniz-Filho JAF, Zipparro VB, Gressler E, Castro ER, Mazine F, Costa IR, Lucas E, Morellato LPC (2015) Clade-specific responses regulate phenological patterns in Neotropical Myrtaceae. Perspectives in Plant Ecology, Evolution and Systematics 17, 476-490.
| Crossref | Google Scholar |

Staggemeier VG, Amorim B, Bünger M, Costa IR, Faria JEQ, Flickinger J, Giaretta A, Kubo MT, Lima DF, Santos LL, Lourenço AR, Lucas E, Mazine FF, Murillo-A J, Oliveira MIL, Parra-O C, Proença CEB, Reginato M, Rosa PO, Santos MF, Stadnik A, Tuler AC, Valdemarin KS, Vasconcelos T (2024) Towards a species-level phylogeny for Neotropical Myrtaceae: notes on topology and resources for future studies. American Journal of Botany 111, e16330.
| Crossref | Google Scholar |

Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genetics & Genomes 2, 30-38.
| Crossref | Google Scholar |

Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular Phylogenetics and Evolution 59, 206-224.
| Crossref | Google Scholar | PubMed |

Stearn WT (2004) ‘Botanical Latin’, 4th edn. (Timber Press: Portland, OR, USA)

Tobias J, Seddon N, Sporriswoode CN, Pilgrim JD, Fishpool LC, Collar N (2010) Quantitative criteria for species delimitation. International Journal of Avian Sciences 152, 724-726.
| Crossref | Google Scholar |

Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology 15, 1419-1439.
| Crossref | Google Scholar | PubMed |

Wickham H (2016) ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York, NY, USA)

Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. In ‘Plant Molecular Systematics II’. (Eds DE Soltis, PS Soltis, JJ Doyle) pp. 43–86. (Kluwer: Boston, MA, USA)

Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat (ISSR) bands. Molecular Ecology 7, 1107-1125.
| Crossref | Google Scholar | PubMed |

Zapata F, Jiménez I (2012) Species delimitation: inferring gaps in morphology across geography. Systematic Biology 61, 179-194.
| Crossref | Google Scholar | PubMed |

Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183.
| Crossref | Google Scholar | PubMed |