Schoenus (Cyperaceae) is not monophyletic based on ITS nrDNA sequence data
Paul M. Musili A C , Adele K. Gibbs A , Karen L. Wilson B and Jeremy J. Bruhl AA Botany, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
B National Herbarium of NSW, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
C Corresponding author. Present address: East African Herbarium, Botany Department, National Museums of Kenya, PO Box 40658 00100, Nairobi, Kenya. Email: pmutuku@museumsor.ke
Australian Systematic Botany 29(5) 265-283 https://doi.org/10.1071/SB15046
Submitted: 18 November 2015 Accepted: 16 September 2016 Published: 22 December 2016
Abstract
We used nuclear rDNA-sequence data from the internal transcribed spacer (ITS) region to test the monophyly of Schoenus by using maximum parsimony and Bayesian inference. Schoenus is not monophyletic, with strong bootstrap support for most branches and congruence across analyses. nrITS does not resolve terminal taxa fully and, therefore, needs to be used in combination with other lines of evidence to address questions of species limits.
References
Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29, 417–434.| Ribosomal ITS sequences and plant phylogenetic inference.Crossref | GoogleScholarGoogle Scholar |
Bailey CD, Carr TG, Harris TA, Hughes C (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29, 435–455.
| Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWntbY%3D&md5=f71b63ce0d5becba1ab1306f27b3301bCAS |
Baldwin B, Markos S (1998) Phylogenetic utility of the external transcribed spacer ETS of 18S–26S rDNA, congruence of ETS and ITS trees of Calycadenia Compositae. Molecular Phylogenetics and Evolution 10, 449–463.
| Phylogenetic utility of the external transcribed spacer ETS of 18S–26S rDNA, congruence of ETS and ITS trees of Calycadenia Compositae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKmtb4%3D&md5=dd7bafc0bf1f1f3ed1992835ebada402CAS |
Baldwin B, Sanderson JM, Porter MF, Wojciechowski CS, Campbell MJ, Donoghue M (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82, 247–277.
| The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny.Crossref | GoogleScholarGoogle Scholar |
Barker NP, Von Senger I, Howis CZ, Achariades C, Ripley BS (2005) Plant phytogeography based on rDNA ITS sequence data, two examples from the Asteraceae. In ‘Plant Species-Level Systematics, New Perspectives on Patterns and Processes’. (Eds FT Barker, LW Chatrou, B Gravendeel, PB Pelser) pp. 143–144. (Rugell: Liechtenstein)
Barrett RL, Barrett MD (2015) Twenty-seven new species of vascular plants from Western Australia. Nuytsia 26, 21–87.
Bentham G (1878) ‘Flora australiensis. Vol. 7.’ (Reeve: London, UK)
Blake ST (1943) Notes on Australian Cyperaceae, VI. Proceedings of the Royal Society of Queensland 54, 69–74.
Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques 27, 1180–1186.
Bruhl JJ (1995) Sedge genera of the world, relationships and a new classification of the Cyperaceae. Australian Systematic Botany 8, 125–305.
| Sedge genera of the world, relationships and a new classification of the Cyperaceae.Crossref | GoogleScholarGoogle Scholar |
Bruhl JJ, Verboom AG, Muasya AM, Henning JL, Barrett RL, Barrett MD, Hodgon J, Simpson DA, Wilson KL, Csiba L, Forest F (2008) Testing monophyly within Schoeneae: a storehouse of phylogenetic diversity in Cyperaceae. In ‘Monocots IV: Fourth International Conference on the Comparative Biology of the Monocotyledons’. Abstract book, p. 12. (Natural History Museum: Copenhagen, Denmark)
Escudero M, Varginia V, Pablo V, Luceno M (2008) Evolution in Carex L. sect. Spirostachyae Cyperaceae: A molecular and cytogenetic approach. Organisms, Diversity & Evolution 7, 271–291.
| Evolution in Carex L. sect. Spirostachyae Cyperaceae: A molecular and cytogenetic approach.Crossref | GoogleScholarGoogle Scholar |
Felsenstein J (1981) Evolutionary trees from DNA sequences, a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
| Evolutionary trees from DNA sequences, a maximum likelihood approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1Cisr8%3D&md5=e771f7e2a50e277f3413b719c3ff6eb5CAS |
Gielly L, Yuan YM, Kupfer P, Taberlet P (1996) Phylogenetic use of noncoding regions in genus Gentiana L., chloroplast trnL UAA intron versus nuclear ribosomal internal transcribed spacer sequences. Molecular Phylogenetics and Evolution 5, 460–466.
| Phylogenetic use of noncoding regions in genus Gentiana L., chloroplast trnL UAA intron versus nuclear ribosomal internal transcribed spacer sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Kisbk%3D&md5=74cc9c77e99b14248722822828a3f142CAS |
Goetghebeur P (1986) Genera Cyperacearum: Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. PhD thesis, Rijkuniversiteit, Gent, Belgium.
Goetghebeur P (1998) Cyperaceae. In ‘The Families and Genera of Vascular Plants’, vol. 4’. (Ed. K Kubitzki) pp. 141–190. (Springer-Verlag: Berlin)
González D, Marc AC, Rytas V (2006) Phylogeny and utility of indels within ribosomal DNA and beta-tubulin sequences from fungi in the Rhizoctonia solani species complex. Molecular Phylogenetics and Evolution 40, 459–470.
| Phylogeny and utility of indels within ribosomal DNA and beta-tubulin sequences from fungi in the Rhizoctonia solani species complex.Crossref | GoogleScholarGoogle Scholar |
Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, Bruhl JJ (2007) ‘World Checklist of Cyperaceae.’ (The Board of Trustees of the Royal Botanic Gardens, Kew: London, UK)
Hall TA (1999) BioEdit 7.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
Hodges SA, Arnold ML (1994) Columbines: a geographically wide-spread species flock. Proceedings of the National Academy of Sciences of the United States of America 91, 5129–5132.
| Columbines: a geographically wide-spread species flock.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3lsFCrtg%3D%3D&md5=918d456cc545714e83d72a8bb8ae2175CAS |
Huelsenbeck JP, Ronquist FR (2001) MRBAYES, Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
| MRBAYES, Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=b8644e64d679ca4a9de09f610a1cf0f1CAS |
Kern JH (1974) Cyperaceae. In ‘Flora Malesiana, Vol. 7’. (Ed. CGGJ van Steenis) pp. 672–680. (Noordhoff: Leyden, Netherlands)
Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Systematic Zoology 18, 1–32.
| Quantitative phyletics and the evolution of anurans.Crossref | GoogleScholarGoogle Scholar |
Kükenthal G (1938) Vorarbeiten zu einer monographie der Rhynchosporoideae. Feddes Repertorium 44, 1–32.
| Vorarbeiten zu einer monographie der Rhynchosporoideae.Crossref | GoogleScholarGoogle Scholar |
Kükenthal G (1940) Vorarbeiten zu einer monographie der Rhynchosporoideae. 9. Feddes Repertorium 48, 195–250.
| Vorarbeiten zu einer monographie der Rhynchosporoideae. 9.Crossref | GoogleScholarGoogle Scholar |
Linnaeus C (1753) ‘Species plantarum’, edn1. (Stockholm: Sweden)
Luo S-X, Esser H-J, Zhang D, Renner SS (2011) Nuclear ITS sequences help disentangle Phyllanthus reticulatus (Phyllanthaceae) an Asian species not occurring in Africa, but introduced to Jamaica. Systematic Botany 36, 99–104.
| Nuclear ITS sequences help disentangle Phyllanthus reticulatus (Phyllanthaceae) an Asian species not occurring in Africa, but introduced to Jamaica.Crossref | GoogleScholarGoogle Scholar |
Margush T, McMorris FR (1981) Consensus n-trees. Bulletin of Mathematical Biology 43, 239–244.
Muasya AM, Simpson DA, Chase MW, Culham A (1998) An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Plant Systematics and Evolution 211, 257–271.
| An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFWntro%3D&md5=16989497cd786ce97530ee2fa4d4a643CAS |
Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E (2009) Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Botanical Review 75, 2–21.
| Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects.Crossref | GoogleScholarGoogle Scholar |
Okihito Y, Takuji H (2006) Phylogenetic relationships and chromosomal evolution of Japanese Fimbristylis Cyperaceae using nrDNA ITS and ETS 1f sequence data. Acta Phytotaxonomica et Geobotanica 57, 205–217.
Posada D, Crandall KA (1998) MODELTEST, testing the model of DNA substitution. Bioinformatics 14, 817–818.
| MODELTEST, testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=77c75d2067ec3ae34f1b9faa6d8d70f0CAS |
Razafimandimbison SG, Kellogg EA, Bremer B (2004) Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Systematic Biology 53, 177–192.
| Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae).Crossref | GoogleScholarGoogle Scholar |
Rye BL (1997) Three new annual species of Schoenus (Cyperaceae) from the south-west of Western Australia. Nuytsia 11, 263–268.
Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniacea). American Journal of Botany 84, 1120–1136.
| Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniacea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFejuro%3D&md5=bd303474ed8334b0c554d311b8b590d6CAS |
Schmidt-Lebuhn AN, Bruhl JJ, Telford IRH, Wilson PG (2015) Phylogenetic relationships of Coronidium, Xerochrysum and several neglected Australian species of ‘Helichrysum’ (Asteraceae: Gnaphalieae). Taxon 64, 96–109.
| Phylogenetic relationships of Coronidium, Xerochrysum and several neglected Australian species of ‘Helichrysum’ (Asteraceae: Gnaphalieae).Crossref | GoogleScholarGoogle Scholar |
Simpson DA, Muasya AM, Alves M, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Nieuborg R, Reznicek AA, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X (2007) Phylogeny of Cyperaceae based on DNA sequence data: a new rbcL analysis. Aliso 23, 72–83.
| Phylogeny of Cyperaceae based on DNA sequence data: a new rbcL analysis.Crossref | GoogleScholarGoogle Scholar |
Small RL, Ryburn JA, Wendel JF (1998) The tortoise and the hare, choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently divergent plant group. American Journal of Botany 85, 1301–1315.
| The tortoise and the hare, choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently divergent plant group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFehtrY%3D&md5=5c0343c2f194756be26c16b5d9146044CAS |
Small RL, Cronn CR, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany 17, 145–170.
| Use of nuclear genes for phylogeny reconstruction in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOrsLw%3D&md5=fb391529cf125c32cb1c96606fb1c246CAS |
Starr JR, Harris SA, Simpson DA (2003) Potential of the 5ʹ and 3ʹ ends of the intergenic space (IGS) of rDNA in Cyperaceae, new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers. International Journal of Plant Sciences 164, 213–227.
| Potential of the 5ʹ and 3ʹ ends of the intergenic space (IGS) of rDNA in Cyperaceae, new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVSjsrY%3D&md5=9904ad91587f8897d1d9bf94db303bc2CAS |
Strong MT (1999) Schoenus lymansmithii (Cyperaceae), a new species of Schoenus section Helothrix from Santa Catarina, Brazil. Harvard Papers in Botany 4, 275–277.
Stuessy TF (2009) ‘Plant Taxonomy: the Systematic Evaluation of Comparative Data.’ (Columbia University Press: New York)
Telford IRH, Pruesapan K, van Welzen PC, Bruhl JJ (2014) Molecular data consistently recover a ‘Queensland clade’ of Synostemon (Phyllanthaceae, Phyllantheae) with distinctive floral morphology. Australian Systematic Botany 27, 450–461.
| Molecular data consistently recover a ‘Queensland clade’ of Synostemon (Phyllanthaceae, Phyllantheae) with distinctive floral morphology.Crossref | GoogleScholarGoogle Scholar |
Telford IRH, Pruesapan K, van Welzen PC, Bruhl JJ (2016) Morphological and molecular data show Synostemon trachyspermus (Phyllanthaceae, Phyllantheae) to be a heterogeneous species assemblage. Australian Systematic Botany 29, 218–234.
| Morphological and molecular data show Synostemon trachyspermus (Phyllanthaceae, Phyllantheae) to be a heterogeneous species assemblage.Crossref | GoogleScholarGoogle Scholar |
Verboom GA (2006) A phylogeny of the schoenoid sedges (Cyperaceae, Schoeneae) based on plastid DNA sequences, with special reference to the genera found in Africa. Molecular Phylogenetics and Evolution 38, 79–89.
| A phylogeny of the schoenoid sedges (Cyperaceae, Schoeneae) based on plastid DNA sequences, with special reference to the genera found in Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSiu7nP&md5=38faeadac02ba9f8243dc2f55f571d45CAS |
Viljoen J-A, Muasya AM, Barrett RL, Bruhl JJ, Gibbs AK, Slingsby JA, Wilson KL, Verboom GA (2013) Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere. American Journal of Botany 100, 2494–2508.
| Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere.Crossref | GoogleScholarGoogle Scholar |
White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds MA Innis, DH Gelfand, JJ Sninsky, JJ White) pp. 315–322. (Academic Press Inc.: New York)
Whitten WM, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae, combined molecular evidence. American Journal of Botany 87, 1842–1856.
| Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae, combined molecular evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFCrug%3D%3D&md5=6e2a43c3f0043053cbae3b0d482fa93eCAS |
Wilson KL (1993) Cyperaceae. In ‘Flora of New South Wales. Vol. 4’. (Ed. GJ Harden) pp. 293–396. (University of NSW: Sydney)
Wilson KL (1994) New taxa and combinations in the family Cyperaceae in eastern Australia. Telopea 5, 589–625.
| New taxa and combinations in the family Cyperaceae in eastern Australia.Crossref | GoogleScholarGoogle Scholar |
Zhang X, Marchant A, Wilson KL, Bruhl JJ (2004) Phylogenetic relationships of Carpha and its relatives (Schoeneae, Cyperaceae) inferred from chloroplast trnL intron and trnL–trnF intergenic spacer sequences. Molecular Phylogenetics and Evolution 31, 647–657.
| Phylogenetic relationships of Carpha and its relatives (Schoeneae, Cyperaceae) inferred from chloroplast trnL intron and trnL–trnF intergenic spacer sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKntbs%3D&md5=9f5e61f3dc5055165983423d93c4b240CAS |
Zhang X, Bruhl JJ, Wilson KL, Marchant A (2007) Phylogeny of Carpha and related genera (Schoeneae, Cyperaceae) inferred from morphological and molecular data. Australian Systematic Botany 20, 93–106.
| Phylogeny of Carpha and related genera (Schoeneae, Cyperaceae) inferred from morphological and molecular data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFymsrk%3D&md5=28b206e74cb4687dfffbed06d2db75dfCAS |