Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Revisiting the biogeography of Sideroxylon (Sapotaceae) and an evaluation of the taxonomic status of Argania and Spiniluma

Gail Stride A B , Stephan Nylinder A and Ulf Swenson A C
+ Author Affiliations
- Author Affiliations

A Department of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden.

B Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH35LR, UK.

C Corresponding author. Email: ulf.swenson@nrm.se

Australian Systematic Botany 27(2) 104-118 https://doi.org/10.1071/SB14010
Submitted: 17 March 2014  Accepted: 31 July 2014   Published: 6 October 2014

Abstract

Biogeography of Sideroxylon (Sapotoideae) and whether the satellite genera Argania and Spiniluma merit recognition are revisited. The hypothesis of an African origin with a subsequent migration to Central America via Europe and the North Atlantic landbridge is challenged. We analysed 58 accessions of trnH-psbA and ITS sequences in a fossil-calibrated, relaxed lognormal clock model with BEAST for phylogenetic and biogeographic inference. Argania spinosa (L.) Skeels from Morocco must be united with Sideroxylon, whereas S. discolor Radcl.-Sm. and S. oxyacanthum Baill. belong to subfamily Chrysophylloideae and may be recognised as Spiniluma. The divergence time estimate suggests that Sideroxylon originated and first diversified in Central America 56.3–52.2 million years ago, contemporaneous with the landbridge, but an archipelago of islands and the Tethys Seaway halted eastward expansion to Africa until c. 20 million years ago, i.e. 25 million years after establishment in Africa. Range expansion of Sideroxylon was therefore not powered by the landbridge, and a long-distance dispersal from Central America to Africa is proposed. The establishment of the Gomphotherium landbridge between Africa and Eurasia at 19 million years ago provided a land-migration route to Europe and Asia, which is reconcilable with the extension of Xantolis into Asia. Sideroxylon has colonised Socotra by over-water dispersal in the Gulf of Aden, Macaronesia, Madagascar and the Mascarene Islands.


References

Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Anderberg AA, Swenson U (2003) Evolutionary lineages in Sapotaceae (Ericales): a cladistic analysis based on ndhF sequence data. International Journal of Plant Sciences 164, 763–773.
Evolutionary lineages in Sapotaceae (Ericales): a cladistic analysis based on ndhF sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVOhsLg%3D&md5=523ef2d05e2d524213e05393724e3adaCAS |

Armstrong K (2010) Systematics and biogeography of the pantropical genus Manilkara Adans. (Sapotaceae). PhD Thesis, University of Edinburgh & RBGE, UK.

Aubréville A (1964) Les Sapotacées: taxonomie et phytogéographie. Adansonia. Mémoire 1, 1–157.

Autin J, Leroy S, Beslier MO, d’Acremont E, Razin P, Ribodetti A, Bellahsen N, Toubi KA (2010) Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman). Geophysical Journal International 180, 501–519.
Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman).Crossref | GoogleScholarGoogle Scholar |

Baehni C (1965) Mémoire sur les Sapotacées III. Inventaire des genres. Boissiera 11, 1–262.

Bartish IV, Antonelli A, Richardson JE, Swenson U (2011) Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). Journal of Biogeography 38, 177–190.
Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae).Crossref | GoogleScholarGoogle Scholar |

Berry EW (1939) A Miocene flora from the gorge of the Yumari River, Matanzas, Cuba. Johns Hopkins University Studies in Geology 13, 95–135.

Bosence DWJ (1997) Mesozoic rift basins of Yemen. Marine and Petroleum Geology 14, 611–616.
Mesozoic rift basins of Yemen.Crossref | GoogleScholarGoogle Scholar |

Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden Basin. Journal of African Earth Sciences 43, 334–378.
The Red Sea and Gulf of Aden Basin.Crossref | GoogleScholarGoogle Scholar |

Bramwell D (1976) ‘The endemic flora of the Canary Islands: distribution, relationships and phytogeography’. In ‘Biogeography and ecology in the Canary Islands’. (Ed. G Kunkel) pp. 207–240. (Dr. W. Junk Publishers: Hague, the Netherlands)

Brammwell D, Brammwell Z (2001) ‘Wild flowers of the Canary Islands.’ (Editorial Rueda: Alcorón, Spain)

Brikiatis L (2014) The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. Journal of Biogeography 41, 1036–1054.
The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography.Crossref | GoogleScholarGoogle Scholar |

Brown G, Mies BA (2012) ‘Vegetation ecology of Socotra.’ (Springer: Dordrecht, the Netherlands)

Carlquist S (1974) ‘Island biology.’ (Columbia University Press: New York)

Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. Journal of Volcanology and Geothermal Research 60, 225–241.
The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes.Crossref | GoogleScholarGoogle Scholar |

Cavagnetto C, Anadón P (1996) Preliminary palynological data on floristic and climatic changes during the Middle Eocene–Early Oligocene on the eastern Ebro Basin, northeast Spain. Review of Palaeobotany and Palynology 92, 281–305.
Preliminary palynological data on floristic and climatic changes during the Middle Eocene–Early Oligocene on the eastern Ebro Basin, northeast Spain.Crossref | GoogleScholarGoogle Scholar |

Charrouf Z, Guillaume D (2008) Argan oil: occurrence, composition and impact on human health. European Journal of Lipid Science and Technology 110, 632–636.
Argan oil: occurrence, composition and impact on human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslWnt78%3D&md5=4d45a0088163fa012a2cea8f138212a5CAS |

Cheung C, DeVantier L (2006) Geology and environment. In ‘Socotra – A natural history of the islands and their people’. (Ed. K van Damme) pp. 14–47. (Odyssey Books and Guides, Airphoto Int. Ltd: Hong Kong)

Christenhusz MJM, Chase MW (2013) Biogeographical patterns of plants in the Neotropics – dispersal rather than plate tectonics is most explanatory. Botanical Journal of the Linnean Society 171, 277–286.
Biogeographical patterns of plants in the Neotropics – dispersal rather than plate tectonics is most explanatory.Crossref | GoogleScholarGoogle Scholar |

Cronk QCB (1992) Relict floras of Atlantic islands: patterns assessed. Biological Journal of the Linnean Society. Linnean Society of London 46, 91–103.
Relict floras of Atlantic islands: patterns assessed.Crossref | GoogleScholarGoogle Scholar |

d’Acremont E, Leroy S, Beslier M-O, Bellahsen N, Fournier M, Robin C, Maia M, Gente P (2005) Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data. Geophysical Journal International 160, 869–890.
Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data.Crossref | GoogleScholarGoogle Scholar |

Davis CC, Fritsch PW, Bell CD, Mathews S (2004) High-latitude Tertiary migrations of an exclusively tropical clade: evidence from the Malpighiaceae. International Journal of Plant Sciences 165, S107–S121.
High-latitude Tertiary migrations of an exclusively tropical clade: evidence from the Malpighiaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFOhurY%3D&md5=c04d33be461bdc680eab4f7f960af628CAS |

de Queiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology & Evolution 20, 68–73.
The resurrection of oceanic dispersal in historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Dobignard A, Chatelain C (2013) ‘Index synonymique de la flore d’Afrique du Nord, Vol. 5.’ (Conservatoire Botanique de Genève: Genève, Switzerland)

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=499f9436671dc6b18bf6cc4d3f4a660cCAS | 22367748PubMed |

Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian Isthmus during initial collision with South America. Geology 39, 1007–1010.
Fracturing of the Panamanian Isthmus during initial collision with South America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SlurnI&md5=751511ba8ceec340a08c86d4699e1cdcCAS |

Fennane M, Ibn Tattou M, Mathez J, Ouyahya A, El Oualidi J (Eds) (1999) ‘Flore pratique du Maroc. Vol. 1.’ (Maroc Travaux de l’Institut Scientifique, Série Botanique: Rabat, Morocco)

Fernández-Palacios JM, Nascimento L, Otto R, Delgado JD, García-del-Rey E, Arévalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38, 226–246.
A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests.Crossref | GoogleScholarGoogle Scholar |

Fleitmann D, Matter A, Burns SJ, Al-Subbary A, Al-Aowah MA (2004) Geology and Quaternary climate history of Socotra. Fauna of Arabia 20, 27–45.

Fournier M, Chamot‐Rooke N, Petit C, Huchon P, Al‐Kathiri A, Audin L, Beslier M-O, d’Acremont E, Fabbri O, Fleury J-M, Khanbari K, Lepvrier C, Leroy S, Maillot B, Merkouriev S (2010) Arabia–Somalia plate kinematics, evolution of the Aden–Owen–Carlsberg triple junction, and opening of the Gulf of Aden. Journal of Geophysical Research 115, B04102
Arabia–Somalia plate kinematics, evolution of the Aden–Owen–Carlsberg triple junction, and opening of the Gulf of Aden.Crossref | GoogleScholarGoogle Scholar |

Friis I (1978) A reconsideration of the genera Monotheca and Spiniluma (Sapotaceae). Kew Bulletin 33, 91–98.
A reconsideration of the genera Monotheca and Spiniluma (Sapotaceae).Crossref | GoogleScholarGoogle Scholar |

Gautier L, Naciri Y, Anderberg AA, Smedmark JEE, Randrianaivo R, Swenson U (2013) A new species, genus and tribe of Sapotaceae, endemic to Madagascar. Taxon 62, 972–983.
A new species, genus and tribe of Sapotaceae, endemic to Madagascar.Crossref | GoogleScholarGoogle Scholar |

Gernhard T (2008) The conditioned reconstructed process. Journal of Theoretical Biology 253, 769–778.
The conditioned reconstructed process.Crossref | GoogleScholarGoogle Scholar | 18538793PubMed |

Gillot PY, Lefevre JC, Nativel PE (1994) Model for the structural evolution of the volcanos of Reunion Island. Earth and Planetary Science Letters 122, 291–302.
Model for the structural evolution of the volcanos of Reunion Island.Crossref | GoogleScholarGoogle Scholar |

Gómez-Díaz E, Sindaco R, Pupin F, Fasola M, Carranza S (2012) Origin and in situ diversification in Hemidactylus geckos of the Socotra Archipelago. Molecular Ecology 21, 4074–4092.
Origin and in situ diversification in Hemidactylus geckos of the Socotra Archipelago.Crossref | GoogleScholarGoogle Scholar | 22738330PubMed |

Govaerts R, Frodin G, Pennington TD (2001) ‘World checklist and bibliography of Sapotaceae.’ (Royal Botanic Gardens, Kew: London)

Gruas-Cavagnetto C (1976) Étude palynologique du Paléogène du sud de l’Angleterre. Cahiers de Micropaléontologie 1, 1–49.

Gupta AK, Singh RK, Joseph S, Thomas E (2004) Indian Ocean high-productivity event (10−8 Ma): linked to global cooling or to the initiation of the Indian monsoons? Geology 32, 753–756.
Indian Ocean high-productivity event (10−8 Ma): linked to global cooling or to the initiation of the Indian monsoons?Crossref | GoogleScholarGoogle Scholar |

Harley MM (1991) The pollen morphology of the Sapotaceae. Kew Bulletin 46, 379–491.
The pollen morphology of the Sapotaceae.Crossref | GoogleScholarGoogle Scholar |

Harzhauser M, Kroh A, Mandic O, Piller WE, Göhlich U, Reuter M, Berning B (2007) Biogeographic responses to geodynamics: a key study all around the Oligo–Miocene Tethyan Seaway. Zoologischer Anzeiger 246, 241–256.
Biogeographic responses to geodynamics: a key study all around the Oligo–Miocene Tethyan Seaway.Crossref | GoogleScholarGoogle Scholar |

Herngreen GFW, Kedves M, Rovnina LV, Smirnova SB (1996) Cretaceous palynological provinces: a review. In ‘Palynology: principles and applications. Vol. 3’. (Eds J Jansonius, DC McGregor) pp. 1157–1188. (American Association of Stratigraphic Palynologists Foundation: Dallas, TX)

Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58, 367–380.
Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times.Crossref | GoogleScholarGoogle Scholar |

Hollick A (1928) Scientific survey of Porto Rico and the Virgin Islands: paleobotany of Puerto Rico. New York Academy of Sciences 7, 177–393.

Koufos GD, Kostopoulos DS, Vlachou TD (2005) Neogene/Quaternary mammalian migration in eastern Mediterranean. Belgian Journal of Zoology 135, 181–190.

Lavin M, Thulin M, Labat J-N, Pennington RT (2000) Africa, the odd man out: molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise. Systematic Botany 25, 449–467.
Africa, the odd man out: molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise.Crossref | GoogleScholarGoogle Scholar |

Lemey P, Rambaut A, Drummond AJ, Suchard MA (2009) Bayesian phylogeography finds its roots. PLoS Computational Biology 5, e1000520
Bayesian phylogeography finds its roots.Crossref | GoogleScholarGoogle Scholar | 19779555PubMed |

Lobin W, Leyens T, Santos A, Costa Neves H, Gomes I (2005) The genus Sideroxylon (Sapotaceae) on the Madeira, Canary Islands and Cape Verde archipelagoes. Vieraea 33, 119–144.

McKenna MC (1983) Cenozoic paleogeography of North Atlantic land bridges. In ‘Structure and development of the Greenland–Scotland bridge: new concepts and methods’. (Eds MHP Bott, S Saxov, S Talwani, J Thiede) pp. 351–395. (Plenum: New York)

McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism.Crossref | GoogleScholarGoogle Scholar |

McQuarrie N, van Hinsbergen DJJ (2013) Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318.
Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction.Crossref | GoogleScholarGoogle Scholar |

Meister J, Hubaishan MA, Kilian N, Oberprieler C (2006) Temporal and spatial diversification of the shrub Justicia areysiana Deflers (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula. Plant Systematics and Evolution 262, 153–171.
Temporal and spatial diversification of the shrub Justicia areysiana Deflers (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Miller AG, Morris M (2004) ‘Ethnoflora of the Soqotra Archipelago.’ (Royal Botanic Garden Edinburgh: Edinburgh, UK)

Möller M, Cronk QCB (1997) Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. American Journal of Botany 84, 956–965.
Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences.Crossref | GoogleScholarGoogle Scholar | 21708650PubMed |

Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrpo-Morena S, Ramírez DA, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012) Evidence for middle Eocene and younger land emergence in central Panama: implications for isthmus closure. Geological Society of America Bulletin 124, 780–799.
Evidence for middle Eocene and younger land emergence in central Panama: implications for isthmus closure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFCnsL4%3D&md5=03576bb551400a13002f46fd247d2317CAS |

Morley RJ (2000) ‘Origin and evolution of tropical rain forests.’ (John Wiley & Sons: Chichester, UK)

Morley RJ (2003) Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6, 5–20.
Interplate dispersal paths for megathermal angiosperms.Crossref | GoogleScholarGoogle Scholar |

Newkirk DR, Martin EE (2009) Circulation through the Central American Seaway during the Miocene carbonate crash. Geology 37, 87–90.
Circulation through the Central American Seaway during the Miocene carbonate crash.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFCnur0%3D&md5=4d086acefeeaa6155ff99db3da61b2ccCAS |

Olesen JM, Alarcón M, Ehlers BK, Aldasoro JJ, Roquet C (2012) Pollination, biogeography and phylogeny of oceanic island bellflowers (Campanulaceae). Perspectives in Plant Ecology, Evolution and Systematics 14, 169–182.
Pollination, biogeography and phylogeny of oceanic island bellflowers (Campanulaceae).Crossref | GoogleScholarGoogle Scholar |

Pennington TD (1990) ‘Flora Neotropica Monograph 52: Sapotaceae’. (New York Botanical Garden: New York)

Pennington TD (1991) ‘The genera of Sapotaceae.’ (Royal Botanic Gardens, Kew: London)

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=5f9dc1fe4e416e87272a118f5d46d24fCAS | 18397919PubMed |

Press JR, Short MJ (1994) ‘Flora of Madeira’. (The National History Museum: London)

Rambaut A (2009) ‘FigTree version 1.4.0.’ Available at http://tree.bio.ed.ac.uk/software/figtree/ [Accessed December 2013]

Rambaut A, Drummond AJ (2009) ‘Tracer version 1.5.’ Available at http://tree.bio.ed.ac.uk/software/tracer/ [Accessed December 2013]

Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar | 18253896PubMed |

Richardson JE, Bakar AM, Tosh J, Armstrong K, Smedmark J, Anderberg AA, Slik F, Wilkie P (2014) The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae). Botanical Journal of the Linnean Society 174, 130–140.
The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae).Crossref | GoogleScholarGoogle Scholar |

Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50, 339–349.

Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84, 1120–1136.
Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFejuro%3D&md5=bea4b3633e5035c504b746e387b9a92aCAS | 21708667PubMed |

Schettino A, Turco E (2011) Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin 123, 89–105.
Tectonic history of the western Tethys since the Late Triassic.Crossref | GoogleScholarGoogle Scholar |

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.
Estimating the dimension of a model.Crossref | GoogleScholarGoogle Scholar |

Scotese CR (2004) A continental drift flipbook. The Journal of Geology 112, 729–741.
A continental drift flipbook.Crossref | GoogleScholarGoogle Scholar |

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Crossref | GoogleScholarGoogle Scholar | 21988835PubMed |

Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntlKjtg%3D%3D&md5=28e47d46829cef3c7826a15c80c9a1c4CAS | 12118412PubMed |

Sindaco R, Metallinou M, Pupin F, Fasola M, Carranze S (2012) Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago. Zoologica Scripta 41, 346–362.
Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago.Crossref | GoogleScholarGoogle Scholar |

Smedmark JEE, Anderberg AA (2007) Boreotropical migration explains hybridization between geographically distinct lineages in the pantropical clade Sideroxyleae (Sapotaceae). American Journal of Botany 94, 1491–1505.
Boreotropical migration explains hybridization between geographically distinct lineages in the pantropical clade Sideroxyleae (Sapotaceae).Crossref | GoogleScholarGoogle Scholar |

Smedmark JEE, Swenson U, Anderberg AA (2006) Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae). Molecular Phylogenetics and Evolution 39, 706–721.
Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslSlt78%3D&md5=b1dc52efa2ec0a0523f74ca415fa1d16CAS |

Smith AG, Smith DG, Funnell BM (1994) ‘Atlas of Mesozoic and Cenozoic coastlines.’ (Cambridge University Press: New York)

Strijk JS, Bone RE, Thébaud C, Buerki S, Fritsch PW, Hodkinson TR, Strasberg D (2014) Timing and tempo of evolutionary diversification in a biodiversity hotspot: Primulaceae on Indian Ocean islands. Journal of Biogeography
Timing and tempo of evolutionary diversification in a biodiversity hotspot: Primulaceae on Indian Ocean islands.Crossref | GoogleScholarGoogle Scholar |

Swenson U, Anderberg AA (2005) Phylogeny, character evolution, and classification of Sapotaceae (Ericales). Cladistics 21, 101–130.
Phylogeny, character evolution, and classification of Sapotaceae (Ericales).Crossref | GoogleScholarGoogle Scholar |

Swenson U, Lowry PP, Munzinger J, Rydin C, Bartish IV (2008a) Phylogeny and generic limits in the Niemeyera complex of New Caledonian Sapotaceae: evidence of multiple origins of the anisomerous flower. Molecular Phylogenetics and Evolution 49, 909–929.
Phylogeny and generic limits in the Niemeyera complex of New Caledonian Sapotaceae: evidence of multiple origins of the anisomerous flower.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCntLzL&md5=aeec5d0f558373a3694d4999556527a1CAS | 18930157PubMed |

Swenson U, Richardson JE, Bartish IV (2008b) Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24, 1006–1031.
Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy.Crossref | GoogleScholarGoogle Scholar |

Swenson U, Nylinder S, Munzinger J (2013) Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in Oceania and Southeast Asia based on nuclear sequence data. Taxon 62, 746–770.
Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in Oceania and Southeast Asia based on nuclear sequence data.Crossref | GoogleScholarGoogle Scholar |

Swenson U, Nylinder S, Munzinger J (2014) Sapotaceae biogeography supports New Caledonia being an old Darwinian island. Journal of Biogeography
Sapotaceae biogeography supports New Caledonia being an old Darwinian island.Crossref | GoogleScholarGoogle Scholar |

Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28, 723–737.

Thulin M (2004) Horn of Africa. In ‘Hotspots revisited: earths biologically richest and most endangered ecoregions’. (Eds RA Mittermeier, P Robles-Gil, M Hoffmann, JD Pilgrim, TB Brooks, CG Mittermeier, JL Lamoreux, GAB Fonseca) pp. 277–283. (CEMEX: Mexico City)

Tiffney BH (1985) The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the northern hemisphere. Journal of the Arnold Arboretum. Arnold Arboretum 66, 243–273.

Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary. International Journal of Plant Sciences 162, S3–S17.
The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary.Crossref | GoogleScholarGoogle Scholar |

Valdés B, Rejdali M, Achhal El Kadmiri A, Jury SL, Montserrat JM (Eds.) (2002) ‘Checklist of vascular plants of N Morocco with identification keys. Vol. 1.’ (CSIC: Madrid)

Van Royen P (1957) Revision of the Sapotaceae of the Malaysian area in a wider sense. VI. Xantolis Rafinesque. Blumea 8, 207–234.

White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds M Innis, D Gelfand, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA)

Wolfe JA (1975) Some aspects of plant geography of the northern hemisphere during the late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 62, 264–279.
Some aspects of plant geography of the northern hemisphere during the late Cretaceous and Tertiary.Crossref | GoogleScholarGoogle Scholar |

Yoder AD, Nowak MD (2006) Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review of Ecology Evolution and Systematics 37, 405–431.
Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell.Crossref | GoogleScholarGoogle Scholar |

Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292, 686–693.
Trends, rhythms and aberrations in global climate 65 Ma to present.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1els78%3D&md5=b539deb45a2655be854954ec46581822CAS | 11326091PubMed |

Zerega NJC, Clement WL, Datwyler SH, Weiblen GD (2005) Biogeography and divergence times in the mulberry family (Moraceae). Molecular Phylogenetics and Evolution 37, 402–416.
Biogeography and divergence times in the mulberry family (Moraceae).Crossref | GoogleScholarGoogle Scholar |