Further progress in historical biogeography
Malte C. Ebach A , Juan J. Morrone B , Isabel Sanmartín C and Tania Escalante DA Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia.
B Museo de Zoología ‘Alfonso L. Herrera’, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico.
C Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain.
D Grupo de Biogeografía de la Conservación, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
Australian Systematic Botany 30(6) i-i https://doi.org/10.1071/SBv30n6_ED
Published: 31 January 2018
References
Amorim DS, Santos CMD (2017) Flies, endemicity, and the Atlantic Forest: a biogeographical study using topographic units of analysis. Australian Systematic Botany 30, 439–469.| Flies, endemicity, and the Atlantic Forest: a biogeographical study using topographic units of analysis.Crossref | GoogleScholarGoogle Scholar |
Chen Y, Escalante T (2017) Correlates of ecological-niche diversity and extinction risk of amphibians in China under climate change. Australian Systematic Botany 30, 414–421.
| Correlates of ecological-niche diversity and extinction risk of amphibians in China under climate change.Crossref | GoogleScholarGoogle Scholar |
Ferrari A (2017) Biogeographical units matter. Australian Systematic Botany 30, 391–402.
| Biogeographical units matter.Crossref | GoogleScholarGoogle Scholar |
Giraudo AR, Arzamendia V (2017) Descriptive bioregionalisation and conservation biogeography: what is the true bioregional representativeness of protected areas? Australian Systematic Botany 30, 403–413.
| Descriptive bioregionalisation and conservation biogeography: what is the true bioregional representativeness of protected areas?Crossref | GoogleScholarGoogle Scholar |
Heads M (2017) Metapopulation vicariance in the Pacific genus Coprosma (Rubiaceae) and its Gondwanan relatives. Australian Systematic Botany 30, 422–438.
| Metapopulation vicariance in the Pacific genus Coprosma (Rubiaceae) and its Gondwanan relatives.Crossref | GoogleScholarGoogle Scholar |
King AR, Ebach MC (2017) A novel approach to time-slicing areas within biogeographic-area classifications: Wallacea as an example. Australian Systematic Botany 30, 495–512.
| A novel approach to time-slicing areas within biogeographic-area classifications: Wallacea as an example.Crossref | GoogleScholarGoogle Scholar |
Ladiges PY, Humphries CJ, Martinelli LW (Eds) (1991). ‘Austral Biogeography.’ (CSIRO: Melbourne, Vic., Australia)
Noguera-Urbano EA, Escalante T (2017) The Neotropical region sensu the areas of endemism of terrestrial mammals. Australian Systematic Botany 30, 470–484.
| The Neotropical region sensu the areas of endemism of terrestrial mammals.Crossref | GoogleScholarGoogle Scholar |
Noguera-Urbano EA, Ferro I (2017) Environmental factors related to biogeographical transition zones of areas of endemism of Neotropical mammals. Australian Systematic Botany 30, 485–494.
| Environmental factors related to biogeographical transition zones of areas of endemism of Neotropical mammals.Crossref | GoogleScholarGoogle Scholar |