Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Relationships within Eucalyptus using chloroplast DNA

MM Sale, BM Potts, AK West and JB Reid

Australian Systematic Botany 6(2) 127 - 138
Published: 1993

Abstract

The potential use of restriction fragment length polymorphisms (RFLPs) of chloroplast DNA to determine relationships at higher taxonomic levels in the genus Eucalptus was examined. Chloroplast DNA from 24 species, encompassing representatives of all the subgenera of Eucalyptus as well as one representative of the genus Angophora, was analysed using four 6-base restriction endonucleases. Eighty-four polymorphisms were obtained (twenty-eight autopomorphic) and the data matrix analysed using both cladistic and phenetic approaches. Results provided relatively good congruence with taxonomic perceptions based on morphological traits. Eucalyptus subgenera Blakella and Corymbia appear to be genetically similar to each other and to Angophora, although their phylogenetic relationships are not resolved in this study. Using Angophora alone, or together with the bloodwoods Blakella and Corynthia, as the outgroup for cladistic analysis, the two representatives of Eudesmia examined form a distinctly separate monophyletic group, which appears to be the sister taxon to Idiogenes, Gaubaen, Monocalyptus and Symphyomyrtus. The results provide some support for the close association of Idiogenes, Gauhaea and Monocalyptus and the hypothesis that they are the sister group of Symphyomyrtus. Taxonomically problematic species Eucalyptus guilfoylei, E. microcorys and E. deglupta were included in the study and it was found that E. guilfoylei appeared to diverge prior to the rest of the Symphyomyrtus, E. microcorys near the root of this clade, while the Telocalyptus representative E. deglupta fell within Symplgvontyrtus. The results obtained from the chloroplast DNA data provided independent support for previous morphological studies while generating new hypotheses and highlighting areas requiring closer examination.

https://doi.org/10.1071/SB9930127

© CSIRO 1993

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions