Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Taxonomy of the Nicotiana megalosiphon species complex (Solanaceae; Nicotiana section Suaveolentes): analyses of RADseq data identifies a new cryptic species

Mark W. Chase https://orcid.org/0000-0002-9927-4938 A B * , Maarten J. M. Christenhusz https://orcid.org/0000-0003-1398-8743 B , Luiz A. Cauz-Santos C , Steven Dodsworth https://orcid.org/0000-0001-6531-3540 D , Ruth Palsson https://orcid.org/0000-0003-1460-8239 E , John G. Conran https://orcid.org/0000-0003-2268-2703 F , Felipe Nollet https://orcid.org/0000-0002-1362-685X G and Rosabelle Samuel https://orcid.org/0000-0003-0197-4854 C
+ Author Affiliations
- Author Affiliations

A Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia.

B Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.

C Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna A-1030 Austria.

D Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.

E Department of Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, NSW 2351, Australia.

F Environment Insititute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

G Departamento de Biologia, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil.


Handling Editor: Darren Crayn

Australian Systematic Botany 37, SB24021 https://doi.org/10.1071/SB24021
Submitted: 11 July 2024  Accepted: 1 November 2024  Published: 29 November 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The Nicotiana megalosiphon Van Heurck & Müll.Arg. species complex has been shown to be composed of several morphologically cryptic species similar to N. simulans N.T.Burb. Using phylogenetic and population genetic approaches (maximum likelihood, co-ancestry, admixture proportions, Bayesian species delimitation and coalescent methods), we demonstrate that there is an additional undescribed species in this complex. The species limits of N. latifolia M.W.Chase & Christenh., N. latzii M.W.Chase, R.W.Jobson & Christenh., N. megalosiphon, N. sessilifolia (P.Horton) M.W.Chase & Christenh. and N. simulans, previously circumscribed based solely on a phylogenetic approach, are confirmed in the new analyses and a new species, N. palssonae M.W.Chase & Christenh., is described. A map of species distributions and a key to the species of the N. megalosiphon species complex are provided.

Keywords: admixture analysis, Bayesian species delimitation, coalescent methods, cryptic species, flora of eastern Australia, Nicotiana simulans, Nicotianoideae, wild tobacco.

References

Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin B (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant–microbe biology research. Molecular Plant-Microbe Interactions 25, 1523-1530.
| Crossref | Google Scholar | PubMed |

Bouckaert RR, Heled J (2018) DensiTree 2: seeing trees through the forest. bioRxiv 012401 [Preprint, posted 8 December 2014].
| Crossref | Google Scholar |

Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution 29, 1917-1919.
| Crossref | Google Scholar | PubMed |

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Molecular Ecology 22, 3124-3140.
| Crossref | Google Scholar | PubMed |

Cauz‐Santos LA, Dodsworth S, Samuel R, Christenhusz MJ, Patel D, Shittu T, Jakob A, Paun O, Chase MW (2022) Genomic insights into recent species divergence in Nicotiana benthamiana and natural variation in Rdr1 gene controlling viral susceptibility. The Plant Journal 111, 7-18.
| Crossref | Google Scholar | PubMed |

Cauz-Santos LA, Samuel R, Metschina D, Christenhusz MJM, Dodsworth S, Dixon KW, Conran JG, Paun O, Chase MW (2024) Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts. Molecular Ecology 33, e17498.
| Crossref | Google Scholar | PubMed |

Chapple DG, Hoskin CJ, Chapple SN, Thompson MB (2011) Phylogeographic divergence in the widespread delicate skink (Lampropholis delicata) corresponds to dry habitat barriers in eastern Australia. BMC Evolutionary Biology 11, 191.
| Crossref | Google Scholar | PubMed |

Chase MW, Christenhusz MJM (2018) Nicotiana stenocarpa. Curtis’s Botanical Magazine 35, 318-327.
| Crossref | Google Scholar |

Chase MW, Christenhusz MJM (2021) Nicotiana megalosiphon. Curtis’s Botanical Magazine 38, 425-434.
| Crossref | Google Scholar |

Chase MW, Dodsworth S, Christenhusz MJM (2021) Nicotiana walpa. Curtis’s Botanical Magazine 38, 298-308.
| Crossref | Google Scholar |

Chase MW, Cauz-Santos LA, Dodsworth S, Christenhusz MJM (2022) Taxonomy of the Australian Nicotiana benthamiana complex (Nicotiana section Suaveolentes; Solanaceae): five species, four newly described, with distinct ranges and morphologies. Australian Systematic Botany 35, 345-363.
| Crossref | Google Scholar |

Chase MW, Christenhusz MJ, Cauz-Santos LA, Nollet F, Bruhl JJ, Andrew DD, Palsson R, Jobson RW, Taseski GM, Samuel R (2023a) Nine new species of Australian Nicotiana (Solanaceae). Australian Systematic Botany 36, 167-205.
| Crossref | Google Scholar |

Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S (2023b) Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). Annals of Botany 131, 123-142.
| Crossref | Google Scholar | PubMed |

Clarkson JR, Symon DE (1991) Nicotiana wuttkei (Solanaceae), a new species from north-eastern Queensland with an unusual chromosome number. Austrobaileya 3, 389-392.
| Crossref | Google Scholar |

Cracraft J (1991) Patterns of diversification within continental biotas: hierarchical congruence among the areas of endemism of Australian vertebrates. Australian Systematic Botany 4, 211-227.
| Crossref | Google Scholar |

Crisp MD, Linder HP, Weston PH (1995) Cladistic biogeography of plants in Australia and New Guinea: congruent pattern reveals two endemic tropical tracks. Systematic Biology 44, 457-473.
| Crossref | Google Scholar |

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G (2011) The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
| Crossref | Google Scholar | PubMed |

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969-1973.
| Crossref | Google Scholar | PubMed |

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 2611-2620.
| Crossref | Google Scholar | PubMed |

Horton P (1981) A taxonomic revision of Nicotiana (Solanaceae) in Australia. Journal of the Adelaide Botanical Garden 3, 1-56 Available at https://www.jstor.org/stable/23872354.
| Google Scholar |

Korneliussen TS, Albrechtsen A, Nielsen R (2014) ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356.
| Crossref | Google Scholar | PubMed |

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5), 1179-1191.
| Crossref | Google Scholar |

Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50(6), 913-925.
| Crossref | Google Scholar |

Lexer C, Joseph J, van Loo M, Prenner G, Heinze B, Chase MW, Kirkup D (2009) The use of digital image‐based morphometrics to study the phenotypic mosaic in taxa with porous genomes. Taxon 58, 349-364.
| Crossref | Google Scholar |

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
| Crossref | Google Scholar | PubMed |

Lischer HEL, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298-299.
| Crossref | Google Scholar | PubMed |

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20, 1297-1303.
| Crossref | Google Scholar | PubMed |

Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528.
| Crossref | Google Scholar | PubMed |

Paun O, Turner B, Trucchi E, Munzinger J, Chase MW, Samuel R (2016) Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Systematic Biology 65, 212-227.
| Crossref | Google Scholar | PubMed |

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901-904.
| Crossref | Google Scholar | PubMed |

Schiavinato M, Marcet-Houben M, Dohm JC, Gabaldón T, Himmelbauer H (2020) Parental origin of the allotetraploid tobacco Nicotiana benthamiana. The Plant Journal 102, 541-554.
| Crossref | Google Scholar | PubMed |

Simpson L, Clements MA, Crayn DM, Nargar K (2018) Evolution in Australia’s mesic biome under past and future climates: insights from a phylogenetic study of the Australian Rock Orchids (Dendrobium speciosum complex, Orchidaceae). Molecular Phylogenetics and Evolution 118, 32-46.
| Crossref | Google Scholar | PubMed |

Skotte L, Korneliussen TS, Albrechtsen A (2013) Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693-702.
| Crossref | Google Scholar | PubMed |

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
| Crossref | Google Scholar | PubMed |

Symon DE (1984) A new species of Nicotiana (Solanaceae) from Dalhousie Springs, South Australia. Journal of the Adelaide Botanical Garden 7, 117-121 Available at https://www.jstor.org/stable/23874136.
| Google Scholar |

Symon DE (1998) A new Nicotiana (Solanaceae) from near Coober Pedy, South Australia. Journal of the Adelaide Botanical Garden 18, 1-4 Available at https://www.jstor.org/stable/23874102.
| Google Scholar |

Symon DE, Kenneally KF (1994) A new species of Nicotiana (Solanaceae) from near Broome. Western Australia. Nuytsia 9, 421-425.
| Crossref | Google Scholar |

Wickham H (2016) ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York, NY, USA)

Wang L-G, Lam TT-Y, Xu S, Dai Z, Zhou L, Feng T, Guo P, Dunn CW, Jones BR, Bradley T, Zhu H, Guan Y, Jiang Y, Yu G (2020) treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Molecular Biology and Evolution 37(2), 599-603.
| Crossref | Google Scholar |

Symon DE, Lepschi BJ (2007) A new status in Nicotiana (Solanaceae): N. monoschizocarpa (P.Horton) Symon & Lepschi. Journal of the Adelaide Botanical Garden 21, 92.
| Google Scholar |

Yu G, Smith DK, Zhu H, Guan Y, Lam TT (2017) ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8, 28-36.
| Crossref | Google Scholar |