Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Biogeographic relationships between Macaronesia and the Americas

John R. Grehan
+ Author Affiliations
- Author Affiliations

Research Associate, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA, USA. Email: calabar.john@gmail.com

Australian Systematic Botany 29(6) 447-472 https://doi.org/10.1071/SB16051
Submitted: 17 November 2016  Accepted: 2 March 2017   Published: 11 May 2017

Abstract

A vicariance model is presented for the origin of Macaronesian endemics and their allopatric American relatives. Trans-Atlantic relationships are identified for 21 taxa in which an endemic Macaronesian clade either has a sister group in the New World or is part of a larger monophyletic group that includes representatives in the New World. Historical implications of this pattern are discussed in relation to current tectonic and geological models for the Central Atlantic and the Macaronesian Islands. The proposed vicariance model identifies a local origin for the Macaronesian endemics from ancestral distributions that already encompassed ancestral Macaronesia and parts of the New and Old World before formation of the Atlantic. The present-day existence of Macaronesian endemics is attributed to sequential colonisation of newly formed islands within the Atlantic from Mesozoic time.

Additional keywords: allopatry, dispersal, divergence, differentiation, evolution, geology, panbiogeography, tectonics, island biogeography, oceanic island, vicariance.


References

Anderson CL, Channing A, Zamuner AB (2009) Life, death and fossilization on Gran Canaria: implications for Macaronesian biogeography and molecular dating. Journal of Biogeography 36, 2189–2201.
Life, death and fossilization on Gran Canaria: implications for Macaronesian biogeography and molecular dating.Crossref | GoogleScholarGoogle Scholar |

Andrews S (1984) A reappraisal of Ilex aquifolium and I. perado (Aquifoliaceae). Kew Bulletin 39, 141–155.
A reappraisal of Ilex aquifolium and I. perado (Aquifoliaceae).Crossref | GoogleScholarGoogle Scholar |

Anguita F, Hernán F (2000) The Canary Islands origin: a unifying model. Journal of Volcanology and Geothermal Research 103, 1–26.
The Canary Islands origin: a unifying model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1eitw%3D%3D&md5=7e8579ef11ca33099771693b69d4f105CAS |

Appelhans MS, Smets E, Razafimandimbison SG, Haevermans T, van Marle EJ, Couloux A, Rabarison H, Randrianarivelojosia M, Keßler PJA (2011) Phylogeny, evolutionary trends and classification of the SpatheliaPtaeroxylon clade: morphological and molecular insights. Annals of Botany 107, 1259–1277.
Phylogeny, evolutionary trends and classification of the SpatheliaPtaeroxylon clade: morphological and molecular insights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCgsL4%3D&md5=06d038ed8fb24d6849417326095ccf34CAS |

Appelhans MS, Keßler PJA, Smets E, Razafimandimbison SG, Janssens SB (2012) Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales). Journal of Biogeography 39, 1235–1250.
Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales).Crossref | GoogleScholarGoogle Scholar |

Arai M (2014) Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective. Brazilian Journal of Geology 44, 339–350.
Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective.Crossref | GoogleScholarGoogle Scholar |

Arnold EN, Vasconcelos R, Harris DJ, Mateo JA, Carranza S (2008) Systematics, biogeography and evolution of the endemic Hemidactylus geckos (Reptilia, Squamata, Gekkonidae) of the Cape Verde Islands: based on morphology and mitochondrial and nuclear DNA sequences. Zoologica Scripta 37, 619–636.
Systematics, biogeography and evolution of the endemic Hemidactylus geckos (Reptilia, Squamata, Gekkonidae) of the Cape Verde Islands: based on morphology and mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Arthur MA, von Rad U, Cornford C, McCoy FW, Sarnthein M (1979) Evolution and sedimentary history of the Cape Bojador continental margin, northwestern Africa. In ‘Initial Reports Deep Sea Drilling Project, Leg 47, Part 1 of the cruises of the drilling vessel Glomar Challenger; Las Palmas, Canary Islands to Vigo, Spain, March–April, 1976’. (Ed. U. Von Rad) pp. 773–816. (US Government Printing Office: Washington, DC, USA)

Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.
Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.Crossref | GoogleScholarGoogle Scholar |

Axelrod DJI (1970) Mesozoic paleogeography and early angiosperm history. Botanical Review 36, 277–319.
Mesozoic paleogeography and early angiosperm history.Crossref | GoogleScholarGoogle Scholar |

Axelrod DI (1972) Ocean-floor spreading in relation to ecosystematic problems. University of Arkansas Museum Occasional Paper 4, 15–68.

Bansal R, Karanth KP (2013) Phylogenetic analysis and molecular dating suggest that Hemidactylus anamallensis is not a member of the Hemidactylus radiation and has ancient Late Cretaceous origin. PLoS One 8, e60615
Phylogenetic analysis and molecular dating suggest that Hemidactylus anamallensis is not a member of the Hemidactylus radiation and has ancient Late Cretaceous origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFGjsrw%3D&md5=79a8116f85f394ad2fea5f99e5ace7dbCAS |

Bauzà-Ribot MM, Juan C, Nardi F, Oromí P, Pons J, Jaume D (2012) Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Current Biology 22, 2069–2074.
Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans.Crossref | GoogleScholarGoogle Scholar |

Beier B-A, Nylander JAA, Chase MW, Thulin M (2004) Phylogenetic relationships and biogeography of the desert plant genus Fagonia (Zygophyllaceae), inferred by parsimony and Bayesian model averaging. Molecular Phylogenetics and Evolution 33, 91–108.
Phylogenetic relationships and biogeography of the desert plant genus Fagonia (Zygophyllaceae), inferred by parsimony and Bayesian model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCrsbw%3D&md5=961db4d79953fc0d6ff7d6ffcf71ab55CAS |

Bell NE, Hyvönen J (2010) Phylogeny of the moss class Polytrichopsida (Bryophyta): generic-level structure and incongruent gene trees. Molecular Phylogenetics and Evolution 55, 381–398.
Phylogeny of the moss class Polytrichopsida (Bryophyta): generic-level structure and incongruent gene trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlCis7Y%3D&md5=afb7b044e311fca2c301f11a65214ab4CAS |

Borges PAV, Cardoso P, Gabriel R, Ah-Peng C, Emerson BC (2016) Challenges, advances and perspectives in island biogeography. Frontiers of Biogeography 8, e29136

Bruyns PV, Klak C, Hanáček H (2011) Age and diversity in Old World succulent species of Euphorbia (Euphorbiaceae). Taxon 60, 1717–1733.

Carine MA (2005) Spatio-temporal relationships of the Macaronesian endemic flora: a relictual series or window of opportunity? Taxon 54, 895–903.
Spatio-temporal relationships of the Macaronesian endemic flora: a relictual series or window of opportunity?Crossref | GoogleScholarGoogle Scholar |

Carine MA, Russell SJ, Santos-Guerra A, Francisco-Ortega J (2004) Relationships of the Macaronesian and Mediterranean floras: molecular evidence for multiple colonizations into Macaronesia and back-colonization of the continent in Convolvulus (Convolvulaceae). American Journal of Botany 91, 1070–1085.
Relationships of the Macaronesian and Mediterranean floras: molecular evidence for multiple colonizations into Macaronesia and back-colonization of the continent in Convolvulus (Convolvulaceae).Crossref | GoogleScholarGoogle Scholar |

Carlquist S (1965) ‘Island Life: a Natural History of the Islands of the World.’ (The Natural History Press: Garden City, NY, USA)

Carracedo J, Perez-Torado FJ, Rodriguez-Gonzalez A, Paris R, Troll VR, Barker AK (2015) Volcanic and structural evolution of Pico do Fogo, Cape Verde. Geology Today 31, 146–152.
Volcanic and structural evolution of Pico do Fogo, Cape Verde.Crossref | GoogleScholarGoogle Scholar |

Carranza S, Arnold EN (2006) Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 38, 531–545.
Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFCqsw%3D%3D&md5=3833201ded4a7e485727192e03b1fceaCAS |

Carranza S, Arnold EN, Mateo JA, López-Jurado LF (2000) Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondria1 DNA sequences. Proceedings of the Royal Society of London 267, 637–649.
Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondria1 DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czovFagug%3D%3D&md5=f4b4bea3f8223d25f9baa8176c0b0231CAS |

Carranza S, Arnold EN, Mateo JA, Geniez P (2002) Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 23, 244–256.
Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOnsbY%3D&md5=427339fd4d603e351693be04f5ba5572CAS |

Caujapé-Castells J (2013) Jesters, red queens, boomerangs and surfers: a molecular clock outlook on the diversity of the Canarian endemic flora. In ‘The Biology of Island Floras’. (Eds D Bramwell, J Caujapé-Castells) pp. 284–324. (Cambridge University Press: Cambridge, UK)

Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Annals of the Missouri Botanical Garden 88, 104–134.
Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes.Crossref | GoogleScholarGoogle Scholar |

Coder KD (2007) Taxonomy and identification: red bay (Persea borbonia). Outreach Publication SFNR07-2, 1–10. (University of Georgia: Athens, GA, USA) Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.605.2766&rep=rep1&type=pdf [Verified 22 March 2017]

Conrad JL, Daza J (2015) Naming and rediagnosing the Cretaceous gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia). Journal of Vertebrate Paleontology 35, e980891–e980892.
Naming and rediagnosing the Cretaceous gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia).Crossref | GoogleScholarGoogle Scholar |

Cowie RH, Holland BS (2006) Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography 33, 193–198.
Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands.Crossref | GoogleScholarGoogle Scholar |

Cox SC, Carranza S, Brown RP (2010) Divergence times and colonization of the Canary Islands by Gallotia lizards. Molecular Phylogenetics and Evolution 56, 747–757.
Divergence times and colonization of the Canary Islands by Gallotia lizards.Crossref | GoogleScholarGoogle Scholar |

Craw RC (1990) New Zealand biogeography: a panbiogeographic approach. New Zealand Journal of Zoology 16, 527–547.
New Zealand biogeography: a panbiogeographic approach.Crossref | GoogleScholarGoogle Scholar |

Craw RC, Grehan JR, Heads MJ (1999) ‘Panbiogeography: Tracking the History of Life.’ (Oxford University Press: New York, NY, USA)

Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91, 1666–1682.
Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits.Crossref | GoogleScholarGoogle Scholar |

Croizat LC (1958) ‘Panbiogeography’, 3 vols. (Published by the Author: Caracas, Venezuela)

Croizat LC (1964) ‘Space, Time, Form: the Biological Synthesis.’ (Published by the Author: Caracas, Venezuela)

Croizat LC (1965) Cenni sulla panbiogeografia delle isole Canarie. Atti dell’Istituto Botanico e Laboratorio Crittogamico dell’Università di Pavia Serie 6 1, 54–98.

Ellis D, Stoker MS (2014) The Faroe–Shetland Basin: a regional perspective from the Paleocene to the present day and its relationship to the opening of the North Atlantic Ocean. Geological Society of London, Special Publications 397, 11–31.
The Faroe–Shetland Basin: a regional perspective from the Paleocene to the present day and its relationship to the opening of the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Esteves CF, Costa JM, Vargas P, Freitas H, Heleno RH (2015) On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS One 10, e0138882
On the limited potential of Azorean fleshy fruits for oceanic dispersal.Crossref | GoogleScholarGoogle Scholar |

Fernández-Palacios JM, de Nascimento L, Otto R, Delgado JD, García-del-Rey1 E, Arévalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38, 226–246.
A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests.Crossref | GoogleScholarGoogle Scholar |

Fernández-Palacios JM, Kueffer C, Drake DR (2015) A new golden era in island biogeography. Frontiers of Biogeography 7, 14–20.

Field WD (1971) Butterflies of the genus Vanessa and of the resurrected genera Bassaris and Cynthia (Lepidoptera: Nymphalidae). Smithsonian Contributions to Zoology 84, 1–105.
Butterflies of the genus Vanessa and of the resurrected genera Bassaris and Cynthia (Lepidoptera: Nymphalidae).Crossref | GoogleScholarGoogle Scholar |

Fior S, Karis PO, Anderberg AA (2003) Phylogeny, taxonomy, and systematic position of Clethra (Clethraceae, Ericales) with notes on biogeography: evidence from plastid and nuclear DNA sequences. International Journal of Plant Sciences 164, 997–1006.
Phylogeny, taxonomy, and systematic position of Clethra (Clethraceae, Ericales) with notes on biogeography: evidence from plastid and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1SgtLo%3D&md5=c2ec044b308e0cdc3996413b809b80dfCAS |

Friis EM, Crane PR, Pedersen KR (2011) ‘Early Flowers and Angiosperm Evolution.’ (Cambridge University Press: Cambridge, UK)

Fuertes Aguilar J, Francisco-Ortega J, Santos-Guerra A, Ray MF, Jansen RK (2002) Chloroplast and nuclear molecular evidence for multiple colonizations of Lavatera (Malvaceae) in the Canary Islands. Systematic Botany 27, 74–83.

Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM (2011) Coming to America: multiple origins of New World geckos. Journal of Evolutionary Biology 24, 231–244.
Coming to America: multiple origins of New World geckos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7lt1egsA%3D%3D&md5=6b8079821a5bcdf372645590a0bd9ab3CAS |

Gamble T, Bauer AM, Colli GR, Rodrigues MT, Werneck FP, Simons AM (2012) Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America’s open biomes. Molecular Phylogenetics and Evolution 62, 943–953.
Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America’s open biomes.Crossref | GoogleScholarGoogle Scholar |

Geldmacher J, Hoernle K, van den Bogaard P, Zankl G, Garbe-Schönberg D (2001) Earlier history of the >70-Ma-old Canary hotspot based on temporal and geochemical evolution of the Selvagens archipelago and neighbouring seamounts in the eastern North Atlantic. Journal of Volcanology and Geothermal Research 111, 55–87.
Earlier history of the >70-Ma-old Canary hotspot based on temporal and geochemical evolution of the Selvagens archipelago and neighbouring seamounts in the eastern North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFymur4%3D&md5=329cf2c1f62efca29538b543d66b092fCAS |

Geldmacher J, Hoernle K, van den Bogaard P, Duggen S, Werner R (2005) New 40K/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: support for the mantle plume hypothesis. Earth and Planetary Science Letters 237, 85–101.
New 40K/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: support for the mantle plume hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslSjsr8%3D&md5=7bde823e6825f75085624148d9f2a393CAS |

Gente P, Dyment J, Maia M, Goslin J (2003) Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: emplacement and rifting of the hot spot-derived plateaus. Geochemistry Geophysics Geosystems 4, 8514
Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: emplacement and rifting of the hot spot-derived plateaus.Crossref | GoogleScholarGoogle Scholar |

Goodson BE, Rehman SK, Jansen RK (2011) Molecular systematics and biogeography of Descurainia (Brassicaceae) based on nuclear ITS and non-coding chloroplast DNA. Systematic Botany 36, 957–980.
Molecular systematics and biogeography of Descurainia (Brassicaceae) based on nuclear ITS and non-coding chloroplast DNA.Crossref | GoogleScholarGoogle Scholar |

Grehan JR (2001) Biogeography and evolution of the Galapagos: integration of the biological and geological evidence. Biological Journal of the Linnean Society. Linnean Society of London 74, 267–287.
Biogeography and evolution of the Galapagos: integration of the biological and geological evidence.Crossref | GoogleScholarGoogle Scholar |

Grehan JR (2011) Introdução à pan-biogeografia: método e síntese. In ‘Biogeografia da América do Sul: padrões e processos’. (Eds CJB de Carvalho, E Almeida) pp. 65–98. (Editora Roca: São Paulo, Brazil)

Guerrero JC, Vargas JM, Real R (2005) A hypothetico-deductive analysis of the environmental factors involved in the current reptile distribution pattern in the Canary Islands. Journal of Biogeography 32, 1343–1351.
A hypothetico-deductive analysis of the environmental factors involved in the current reptile distribution pattern in the Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Hanafusa H (1992) Three new nymphalid butterflies from Indonesia and Philippines. Futao 10, 1–16.

Harris DJ, Batista V, Lymberakis P, Carretero MA (2004) Complex estimates of evolutionary relationships in Tarentola mauritanica (Reptilia: Gekkonidae) derived from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 30, 855–859.
Complex estimates of evolutionary relationships in Tarentola mauritanica (Reptilia: Gekkonidae) derived from mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Hastie AR, Kerr AC (2010) Mantle plume or slab window? Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth-Science Reviews 98, 283–293.
Mantle plume or slab window? Physical and geochemical constraints on the origin of the Caribbean oceanic plateau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOit7o%3D&md5=7e504e5b60bc4b69ee1787f5f0b9a2e0CAS |

Heads M (2005) Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics 21, 62–78.
Dating nodes on molecular phylogenies: a critique of molecular biogeography.Crossref | GoogleScholarGoogle Scholar |

Heads M (2009a) Inferring biogeographic history from molecular phylogenies. Biological Journal of the Linnean Society. Linnean Society of London 98, 757–774.
Inferring biogeographic history from molecular phylogenies.Crossref | GoogleScholarGoogle Scholar |

Heads M (2009b) Vicariance. In ‘Encyclopedia of Islands’. (Eds RG Gillespie, DA Clague) pp. 947–950. (University of California Press: Berkeley, CA, USA)

Heads M (2011) Old taxa on young islands: a critique of the use of island age to date island-endemic clades and calibrate phylogenies. Systematic Biology 60, 204–218.
Old taxa on young islands: a critique of the use of island age to date island-endemic clades and calibrate phylogenies.Crossref | GoogleScholarGoogle Scholar |

Heads M (2012) ‘Molecular Panbiogeography of the Tropics.’ (University of California Press: Berkeley, CA, USA)

Heads M (2014a) ‘Biogeography of Australasia: a Molecular Analysis.’ (Cambridge University Press: Cambridge, UK)

Heads M (2014b) Biogeography by revelation: investigating a world shaped by miracles. Australian Journal of Botany 27, 282–304.

Heads M (2016) Pan-biogeografia da América do Sul. In ‘Biogeografia da América do Sul: Análise de tempo, espaço e forma’. (Eds CJB de Carvalho, EAB Almeida) pp. 57–103. (Roca: Rio de Janeiro, Brazil)

Hedges OB, Vidal N (2009) Lizards, snakes and amphisbaenians (Squamata). In ‘The Timeline Tree of Life’. (Eds SB Hedges, S Kumar) pp. 383–389. (Oxford University Press: New York, NY, USA)

Heine C, Brune S (2014) Oblique rifting of the equatorial Atlantic: why there is no Saharan Atlantic Ocean. Geology 42, 211–214.
Oblique rifting of the equatorial Atlantic: why there is no Saharan Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Herbert J (2005) Systematics and biogeography of Myricaceae. PhD thesis, University of St Andrews, St Andrews, UK.

Hoenemann M, Neiber MT, Humphreys WF, Iliffe TM, Li D, Schram FR, Koenemann S (2013) Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. Journal of Crustacean Biology 33, 603–619.
Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data.Crossref | GoogleScholarGoogle Scholar |

Humphries CJ (1979) Endemism and evolution in Macaronesia. In ‘Plants and Islands’. (Eds D. Bramwell) pp. 171–199. (Academic Press: London, UK)

Joger U (1984) Taxonomische revision der Gattung Tarentola (Reptilia: Gekkonidae). Bonner Zoologische Beitrage 35, 129–174.

Joger U, Slimani T, El Mouden H, Geniez P (2006a) Tarentola boehmei (Böhme’s gecko). In ‘The IUCN Red List of Threatened Species’, ver. 3.1, e.T61573A12493946. (International Union for Conservation of Nature and Natural Resources) Available at https://doi.org/10.2305/IUCN.UK.2006.RLTS.T61573A12493946.en [Verified 14 March 2017]

Joger U, Slimani T, El Mouden H, Geniez P (2006b) Tarentola deserti (desert wall gecko). In ‘The IUCN Red List of Threatened Species’, ver. 3.1, e.T61576A12494982. (International Union for Conservation of Nature and Natural Resources) Available at https://doi.org/10.2305/IUCN.UK.2006.RLTS.T61576A12494982.en [Verified 14 March 2017]

Juan CJ, Emerson BC, Oromí P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends in Ecology & Evolution 15, 104–109.
Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbhsVKgtw%3D%3D&md5=e1f936bc65075cf37198c29894f64b5aCAS |

Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condle J, Kessler D, Clarke WE, Edger PP, Links MG, Sharpe AG, Parkin IAP (2014) Polyploid evolution of the Brassicaceae during the Cenozoic Era. The Plant Cell 26, 2777–2791.
Polyploid evolution of the Brassicaceae during the Cenozoic Era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFaks7%2FF&md5=68548d0449b8efc708ad926c6e5f07a6CAS |

Karin BR, Metallinou M, Weinell JL, Jackman TR, Bauer AM (2016) Resolving the higher-order phylogenetic relationships of the circumtropical Mabuya group (Squamata: Scincidae): an out-of-Asia diversification. Molecular Phylogenetics and Evolution 102, 220–232.
Resolving the higher-order phylogenetic relationships of the circumtropical Mabuya group (Squamata: Scincidae): an out-of-Asia diversification.Crossref | GoogleScholarGoogle Scholar |

Kim SC, McGowan MR, Lubinsky P, Barber JC, Mort ME, Santos-Guerra A (2008) Timing and tempo of early and successive adaptive radiations in Macaronesia. PLoS One 3, e2139
Timing and tempo of early and successive adaptive radiations in Macaronesia.Crossref | GoogleScholarGoogle Scholar |

Kondraskov P, Schütz N, Schüßler C, Menezes de Sequeira M, Santos Guerra A, Caujapé-Casetells J, Jaén-Molina R, Marrero-Rodríguez A, Koch MA, Linder P, Kovar-Eder J, Thiv M (2015) Biogeography of Mediterranean hotspot biodiversity: re-evaluating the ‘tertiary relict’ hypothesis of Macaronesian laurel forests. PLoS One 10, e0132091
Biogeography of Mediterranean hotspot biodiversity: re-evaluating the ‘tertiary relict’ hypothesis of Macaronesian laurel forests.Crossref | GoogleScholarGoogle Scholar |

Kostrowicki AS (1969) ‘Geography of the Palaearctic Papilionoidea (Lepidoptera).’ (Pafstwowe Wydawnictwo Naukowe: Krakow, Poland)

Krause DW, Evans SE, Gao K-Q (2003) First definitive record of Mesozoic lizards from Madagascar. Journal of Vertebrate Paleontology 23, 842–856.
First definitive record of Mesozoic lizards from Madagascar.Crossref | GoogleScholarGoogle Scholar |

Larrea P, Wijbrans JR, Galé C, Ubide T, Lago M, França Z, Widom E (2014) 40Ar/39Ar constraints on the temporal evolution of Graciosa Island, Azores (Portugal). Bulletin of Volcanology 76, 796
40Ar/39Ar constraints on the temporal evolution of Graciosa Island, Azores (Portugal).Crossref | GoogleScholarGoogle Scholar |

Li L, Li J, Rohwer JG, van der Werft H, Wang ZH, Li HW (2011) Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical amphi-Pacific disjunctions. American Journal of Botany 98, 1520–1536.
Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical amphi-Pacific disjunctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSks73I&md5=9fa93d7e691d4b158aa44b521e70ccc7CAS |

Lledó MD, Crespo MB, Fay MF, Chase MW (2005) Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications. American Journal of Botany 92, 1189–1198.
Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications.Crossref | GoogleScholarGoogle Scholar |

Loizeau P-A, Barriera G, Manen J-F, Broennimann O (2005) Towards an understanding of the distribution of Ilex L. (Aquifoliaceae) on a world-wide scale. Biologiske Skrifter Kongelige Danske Videnskabernes Selskab 55, 501–520.

Manen J-F, Barriera G, Loizeau P-A, Naciri Y (2010) The history of extant Ilex species (Aquifoliaceae): evidence of hybridization within a Miocene radiation. Molecular Phylogenetics and Evolution 57, 961–977.
The history of extant Ilex species (Aquifoliaceae): evidence of hybridization within a Miocene radiation.Crossref | GoogleScholarGoogle Scholar |

Martínez C, Choo TYS, Allevato D, Nixon KC, Crepet WL, Harbert RS, Daghlian CP (2016) Rariglanda jerseyensis, a new ericalean fossil flower from the Late Cretaceous of New Jersey. Botany 94, 747–758.
Rariglanda jerseyensis, a new ericalean fossil flower from the Late Cretaceous of New Jersey.Crossref | GoogleScholarGoogle Scholar |

Miller JY, Brown FM (1989) A new Oligocene fossil butterfly, Vanessa Amerindica (Lepidoptera: Nymphalidae), from the Florissant Formation, Colorado. Bulletin of the Allyn Museum 126, 1–9.

Moniz J, Silva L (2004) Impact of Clethra arborea Aiton (Clethraceae) in a special protection area of São Miguel Island, Azores. Arquipélago – Life and Marine Sciences 20A, 37–46.

Morando M, Medina CD, Avila LJ, Perez CHF, Buxton A, Sites JW (2014) Molecular phylogeny of the New World gecko genus Homonota (Squamata: Phyllodactylidae). Zoologica Scripta 43, 249–260.
Molecular phylogeny of the New World gecko genus Homonota (Squamata: Phyllodactylidae).Crossref | GoogleScholarGoogle Scholar |

Mort ME, Soltis DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A (2001) Phylogenetic relationships and evolution of Crassulaceae inferred from MATK sequence data. American Journal of Botany 88, 76–91.
Phylogenetic relationships and evolution of Crassulaceae inferred from MATK sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Sju7c%3D&md5=533fe9954a7e3e9de355405f95983abaCAS |

Mort ME, Soltis DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A (2002) Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. Systematic Botany 27, 271–288.

Neiber MT, Hartke TR, Stemme T, Bergmann A, Rust J, Iliffe TM, Koenemann S (2011) Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea). PLoS One 6, e19627
Global biodiversity and phylogenetic evaluation of Remipedia (Crustacea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Kht74%3D&md5=2f70f19eba3234d2ebe1cff1db709d4eCAS |

Patriat M, Labails C (2006) Linking the Canary and Cape-Verde hot-spots, Northwest Africa. Marine Geophysical Researches 27, 201–215.
Linking the Canary and Cape-Verde hot-spots, Northwest Africa.Crossref | GoogleScholarGoogle Scholar |

Pellegrino KCM, Rodrigues MT, Waite AN, Morando M, Yassuda YY, Sites JW (2005) Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest. Biological Journal of the Linnean Society. Linnean Society of London 85, 13–26.
Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

Rato C, Carranza S, Harris DJ (2012) Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data. BMC Evolutionary Biology 12, 14
Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt12jur0%3D&md5=8c68a7bb62e611c1bee0838a73654bf3CAS |

Riina R, Peirson JA, Geltman DV, Molero J, Frajman B, Pahlevani A, Barres L, Morawetz JJ, Salmaki Y, Zarre S, Kryukov A, Bruyns PV, Berry PE (2013) A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae). Taxon 62, 316–342.
A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae).Crossref | GoogleScholarGoogle Scholar |

Salvo G, Ho SYW, Rosenbaum G, Ree R, Conti E (2010) Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Systematic Biology 59, 705–722.
Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae).Crossref | GoogleScholarGoogle Scholar |

Sanmartín I, van der Mark P, Ronquist F (2008) Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. Journal of Biogeography 35, 428–449.
Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Seiler J, Jensen E, Niemiera A, Peterson J (2016a) Redbay Lauraceae Persea borbonia (L.) Spreng. Pesonia borbonia fact sheet. (Virginia Tech, Department of Forest Resources and Environmental Conservation) Available at http://edis.ifas.ufl.edu/st436 [Verified 22 March 2017]

Seiler J, Jensen E, Niemiera A, Peterson J (2016b) Redbay Lauraceae Persea palustris (Raf.) Srg. Pesonia palustris fact sheet. (Virginia Tech, Department of Forest Resources and Environmental Conservation) Available at http://edis.ifas.ufl.edu/fr322 [Verified 22 March 2017]

Sessa EB, Zimmer EA, Givnish TJ (2012) Phylogeny, divergence times, and historical biogeography of New World Dryopteris (Dryopteridaceae). American Journal of Botany 99, 730–750.
Phylogeny, divergence times, and historical biogeography of New World Dryopteris (Dryopteridaceae).Crossref | GoogleScholarGoogle Scholar |

Sibuet J-C, Rouzo S, Srivastava S (2012) Plate tectonic reconstructions and paleogeographic maps of the Central and North Atlantic oceans. Revue Canadienne des Sciences de la Terre 49, 1395–1415.
Plate tectonic reconstructions and paleogeographic maps of the Central and North Atlantic oceans.Crossref | GoogleScholarGoogle Scholar |

Sjögren SJ (2000) Aspects on the biogeography of Macaronesia from a botanical point of view. Arquipélago – Life and Marine Sciences 1–9.

Smith CE (1966) Archeological evidence for selection in avocado. Economic Botany 20, 169–175.
Archeological evidence for selection in avocado.Crossref | GoogleScholarGoogle Scholar |

Spalik K, Downie SR (2007) Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal using molecular data. Journal of Biogeography 34, 2039–2054.
Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal using molecular data.Crossref | GoogleScholarGoogle Scholar |

Spalik K, Piwczyński M, Danderson CA, Kurzyna-Młynik R, Bone TS, Downie SR (2010) Amphitropic amphiantarctic disjunctions in Apiaceae subfamily Apioideae. Journal of Biogeography 37, 1977–1994.

Stock JH (1995) Biogeography and evolutionary scenario of aquatic organisms in Macaronesia. Boletim do Museu Municipal do Funchal 4, 729–745.

Tehler A, Dahlkild Å, Eldenäs P, Feige GB (2004) The phylogeny and taxonomy of Macaronesian, European and Mediterranean Roccella (Roccellaceae, Arthoniales). Symbolae Botanicae Upsalienses 34, 405–428.

Tehler A, Irestedt M, Wedin M, Ertz D (2009a) Origin, evolution and taxonomy of American Roccella (Roccellaceae, Ascomycetes). Systematics and Biodiversity 7, 307–317.
Origin, evolution and taxonomy of American Roccella (Roccellaceae, Ascomycetes).Crossref | GoogleScholarGoogle Scholar |

Tehler A, Irestedt M, Bungartz F, Wedin M (2009b) Evolution and reproduction modes in the Roccella galapagoensis aggregate (Roccellaceae, Arthoniales). Taxon 58, 438–456.

Tehler A, Irestedt M, Wedin M, Ertz D (2010) The Old World Roccella species outside Europe and Macaronesia: taxonomy, evolution and phylogeny. Systematics and Biodiversity 8, 223–246.
The Old World Roccella species outside Europe and Macaronesia: taxonomy, evolution and phylogeny.Crossref | GoogleScholarGoogle Scholar |

Tehler A, Ertz D, Irestedt M (2013) The genus Dirina (Roccellaceae, Arthoniales) revisited. Lichenologist 45, 427–476.
The genus Dirina (Roccellaceae, Arthoniales) revisited.Crossref | GoogleScholarGoogle Scholar |

Thiv M, van der Niet T, Rutschmann F, Thulin M, Brune T, Linder HP (2011) Old–New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome. American Journal of Botany 98, 76–87.
Old–New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome.Crossref | GoogleScholarGoogle Scholar |

Torsvik TH, Amundsend HEF, Trønnes RG, Doubrovine PV, Gainaa C, Kusznir NJ, Steinbergera B, Corfua F, Ashwal LD, Griffin WL, Wernera SC, Jamtveit B (2015) Continental crust beneath southeast Iceland. Proceedings of the National Academy of Sciences of the United States of America 112, E1818–E1827.
Continental crust beneath southeast Iceland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOns7o%3D&md5=e4034afbbf6b0c3c5eef557efa9fa2b9CAS |

Traveset A, Quintana J, Alcover JA (2005) Fossil seeds from the Pliocene of Menorca and Eivissa (Balearic Islands, Western Mediterranean). ENDiNS 27, 205–209.

Troll VR, Deegan FM, Burchardt S, Zaczek K, Carracedo J-C, Meade FC, Soler V, Cachao M, Ferreira J, Barker AK (2015) Nannofossils: the smoking gun for the Canarian hotspot. Geology Today 31, 137–145.
Nannofossils: the smoking gun for the Canarian hotspot.Crossref | GoogleScholarGoogle Scholar |

van den Bogaard P (2013) The origin of the Canary Island seamount province: new ages of old seamounts. Scientific Reports 3, 2107
The origin of the Canary Island seamount province: new ages of old seamounts.Crossref | GoogleScholarGoogle Scholar |

Vane-Wright RI, Hughes HWD (2007) Did a member of Vanessa indica complex (Nymphalidae) formerly occur in North America? Journal of the Lepidopterists Society 6, 199–212.

Wahlberg N, Rubinoff DL (2011) Vagility across Vanessa (Lepidoptera: Nymphalidae): mobility in butterfly species does not inhibit the formation and persistence of isolated sister taxa. Systematic Entomology 36, 362–370.
Vagility across Vanessa (Lepidoptera: Nymphalidae): mobility in butterfly species does not inhibit the formation and persistence of isolated sister taxa.Crossref | GoogleScholarGoogle Scholar |

Whittaker RJ, Triantis KA, Ladle RJ (2008) A general dynamic theory of oceanic island biogeography. Journal of Biogeography 35, 977–994.
A general dynamic theory of oceanic island biogeography.Crossref | GoogleScholarGoogle Scholar |

Wikström N, Savolainen V, Chase MW (2001) Evolution of the Angiosperms: calibrating the family tree. Proceedings of the Royal Society of London – B. Biological Sciences 268, 2211–2220.
Evolution of the Angiosperms: calibrating the family tree.Crossref | GoogleScholarGoogle Scholar |

Williams DM, Ebach MC (2014) Patterson’s curse, molecular homology, and the data matrix. In ‘The Evolution of Phylogenetic Systematics’. (Ed. A Hamilton) pp. 151–188. (University of California Press: Oakland, CA, USA)

Williams VL, Raimondo D, Crouch NR, Cunningham AB, Scott-Shaw CR, Lötter M, Ngwenya AM, Dold AP (2008) Ocotea bullata (Burch.) Baill. (black stinkwood). In ‘Red List of South African Plants’, ver. 2017.1. (South African National Biodiversity Institute) Available at http://redlist.sanbi.org/species.php?species=1017-1 [Verified 15 March 2017]

Wilms T, Wagner P, Geniez P, Mateo JA, Joger U, Pleguezuelos J, Slimani T, El Mouden EH (2013) Tarentola chazaliae (helmethead gecko). In ‘The IUCN Red List of Threatened Species’, ver. 3.1, e.T199698A2609259. (International Union for Conservation of Nature and Natural Resources) Available at https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T199698A2609259.en [Verified 21 March 2017]

World Conservation Monitoring Centre (1998) Ocotea foetens. In ‘The IUCN Red List of Threatened Species’, ver. 2.3, e.T30328A9537184. (International Union for Conservation of Nature and Natural Resources) Available at http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T30328A9537184.en [Verified 20 March 2017]

Zaczek K, Troll VR, Cachao M, Ferreira J, Deegan FM, Carracedo JC, Soler V, Meade FC, Burchardt S (2015) Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands. Scientific Reports 5, 7945
Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFGnsr7O&md5=43a366ad327942881035cb2097d25abaCAS |