Effective application of next-generation sequencing (NGS) approaches in systematics and population genetics: case studies in Eucalyptus and Acacia
Hugh Cross A B C , Ed Biffin A B , Kor-jent van Dijk B , Andrew Lowe B and Michelle Waycott A BA State Herbarium of South Australia, Department of Environment, Water and Natural Resources, PO Box 1047, Adelaide, SA 5001, Australia.
B Environment Institute and School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
C Corresponding author. Present address: Norwegian Institute of Bioeconomy Research, Department of Forest Health, Postboks 115, N-1431 Aas, Norway. Email: hugh.cross@nibio.no; hughbcross@gmail.com
Australian Systematic Botany 29(3) 235-246 https://doi.org/10.1071/SB16019
Submitted: 16 April 2016 Accepted: 8 September 2016 Published: 29 November 2016
Abstract
Next-generation sequencing (NGS) provides numerous tools for population and systematic studies. These tools are a boon to researchers working with non-model and poorly characterised organisms where little or no genomic resources exist. Several techniques have been developed to subsample the genomes of multiple individuals from related populations and species, so as to discover variable regions. We describe here the use of a modified AFLPseq method that provides a rapid and cost-effective approach to screening variable gene regions (SNPs) for multiple samples. Our method provides an adaptable toolkit for multiple downstream applications, which can be scaled up or down depending on the needs of the research question and budget. Using minor modifications to the protocol, we successfully recovered variable and useful markers that were applied to three case studies examining different scales of biological organisation, namely, from within populations to phylogenetic questions at the genus level and above. The case studies on Acacia and Eucalyptus generated genomic data across multiple taxonomic hierarchies, including demonstrating the detection of Acacia pinguifolia J.M.Black individuals used in restoration and their population origins, regional phylogeography of Acacia pycnantha Benth., and SNP-marker conservatism across some 70 million years of divergence among the Myrtaceae.
References
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376| Rapid SNP discovery and genetic mapping using sequenced RAD markers.Crossref | GoogleScholarGoogle Scholar |
Bennett M, Leitch I (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107, 467–590.
| Nuclear DNA amounts in angiosperms: targets, trends and tomorrow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1egtbo%3D&md5=8ee24ba424d4c0475f2f8e356a7f211aCAS |
Biffin E, Lucas EJ, Craven LA, da Costa IR, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany 106, 79–93.
| Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsLk%3D&md5=5e71b87cf59e1c8e898db91680cd93c8CAS |
Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Australian Systematic Botany 13, 79–148.
| A new classification of the genus Eucalyptus L’Her. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Cariou M, Duret L, Charlat S (2013) Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization. Ecology and Evolution 3, 846–852.
| Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization.Crossref | GoogleScholarGoogle Scholar |
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. Genes, Genomes, Genetics 1, 171–182.
Cavender-Bares J, González-Rodríguez A, Eaton DA, Hipp AA, Beulke A, Manos PS (2015) Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Molecular Ecology 24, 3668–3687.
| Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach.Crossref | GoogleScholarGoogle Scholar |
Coghill LM, Hulsey CD, Chaves-Campos J, de Leon FJG, Johnson SG (2014) Next generation phylogeography of cave and surface Astyanax mexicanus. Molecular Phylogenetics and Evolution 79, 368–374.
| Next generation phylogeography of cave and surface Astyanax mexicanus.Crossref | GoogleScholarGoogle Scholar |
Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DM (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications 2, 193
| Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary.Crossref | GoogleScholarGoogle Scholar |
Cruaud A, Gautier M, Galan M, Foucaud J, Sauné L, Genson G, Dubois E, Nidelet S, Deuve T, Rasplus J-Y (2014) Empirical assessment of RAD sequencing for interspecific phylogeny. Molecular Biology and Evolution 31, 1272–1274.
| Empirical assessment of RAD sequencing for interspecific phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCit7o%3D&md5=123558e215c56944af804627913c03bcCAS |
Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Briefings in Functional Genomics 9, 416–423.
| RADSeq: next-generation population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Wmtr4%3D&md5=579e0eb276f665534df0627da4ac44a7CAS |
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews. Genetics 12, 499–510.
| Genome-wide genetic marker discovery and genotyping using next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslShu7k%3D&md5=de49cc4b393ea13fc50ff4ba12f1b517CAS |
Eaton DA (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849.
| PyRAD: assembly of de novo RADseq loci for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFShsL%2FM&md5=5d9abb22feeb753f342ecc73ec303420CAS |
Eaton DAR, Ree RH (2013) Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology 62, 689–706.
| Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yrs7vN&md5=3dbc123491ca61a424535ca8bdab0aa7CAS |
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379
| A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVKru7Y%3D&md5=894d60f3608762cf0dcb1a82aaba2f45CAS |
Emerson KJJ, Merz CRR, Catchen JMM, Hohenlohe PAA, Cresko WAA, Bradshaw WEE, Holzapfel CMM (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America 107, 16196–16200.
| Resolving postglacial phylogeography using high-throughput sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2hsL3F&md5=03244f711b66464c2a59caee3164e395CAS |
Escudero M, Eaton DA, Hahn M, Hipp AL (2014) Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Molecular Phylogenetics and Evolution 79, 359–367.
| Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGgsbjL&md5=45fb9d62a6f958b028a73d8a9b37369aCAS |
Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Molecular Methods for Evolutionary Genetics 772, 157–178.
| SNP discovery and genotyping for evolutionary genetics using RAD sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFeqtL4%3D&md5=8e0e39ef648402d4b4a3d24cc89b47d2CAS |
Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics 60, 1–18.
| SNP genotyping using the Sequenom MassARRAY iPLEX platform.Crossref | GoogleScholarGoogle Scholar |
Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines: recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
| Rise of the machines: recommendations for ecologists when using next generation sequencing for microsatellite development.Crossref | GoogleScholarGoogle Scholar |
Gompert Z, Forister ML, Fordyce JA, Nice CC, Williamson RJ, Alex Buerkle C (2010) Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies. Molecular Ecology 19, 2455–2473.
Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326, 1115–1117.
| A first-generation haplotype map of maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVentLvE&md5=30a11c818651e1966cea04117aecc3deCAS |
Hipp AL, Manos PS, Cavender-Bares J, Eaton DA, Nipper R (2013) Using phylogenomics to infer the evolutionary history of oaks. International Oak Journal 24, 61–71.
Hipp AL, Eaton DA, Cavender-Bares J, Fitzek E, Nipper R, Manos PS (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One 9, e93975
| A framework phylogeny of the American oak clade based on sequenced RAD data.Crossref | GoogleScholarGoogle Scholar |
Hird SM, Brumfield RT, Carstens BC (2011) PRGmatic: an efficient pipeline for collating genome-enriched second-generation sequencing data using a ‘provisional-reference genome’. Molecular Ecology Resources 11, 743–748.
| PRGmatic: an efficient pipeline for collating genome-enriched second-generation sequencing data using a ‘provisional-reference genome’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVGrsb0%3D&md5=68d63151a98e93559f7948fd08354423CAS |
Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLOS Genetics 6, e1000862
| Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.Crossref | GoogleScholarGoogle Scholar |
Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington R, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources 9, 439–457.
| Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVKgtbs%3D&md5=60a1d4f7c722051af391306152b2b004CAS |
Huang H, Knowles LL (2016) Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Systematic Biology 65, 357–365.
| Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences.Crossref | GoogleScholarGoogle Scholar |
Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, e2–5.
| Diversity arrays: a solid state technology for sequence information independent genotyping.Crossref | GoogleScholarGoogle Scholar |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |
Kelly LJ, Leitch IJ (2011) Exploring giant plant genomes with next-generation sequencing technology. Chromosome Research 19, 939–953.
| Exploring giant plant genomes with next-generation sequencing technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqurfN&md5=621d5d0d6cf6ffc6ccf33d8a690bbaa6CAS |
Leaché AD, Fujita MK, Minin VN, Bouckaert RR (2014) Species delimitation using genome-wide SNP data. Systematic Biology 63, 534–542.
| Species delimitation using genome-wide SNP data.Crossref | GoogleScholarGoogle Scholar |
Lepais O, Weir JT (2014) SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Molecular Ecology Resources 14, 1314–1321.
| SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslCqtr7O&md5=bcb85c1e6c584d901628968ecc3c6105CAS |
Leroux S, Feve K, Vignoles F, Bouchez O, Klopp C, Noirot C, Gourichon D, Richard S, Leterrier C, Beaumont C, Minvielle F, Vignal A, Pitel F (2010) Non PCR-amplified Transcripts and AFLP fragments as reduced representations of the quail genome for 454 titanium sequencing. BMC Research Notes 3, 214
| Non PCR-amplified Transcripts and AFLP fragments as reduced representations of the quail genome for 454 titanium sequencing.Crossref | GoogleScholarGoogle Scholar |
Lexer C, Mangili S, Bossolini E, Forest F, Stölting KN, Pearman PB, Zimmermann NE, Salamin N (2013) ‘Next generation’ biogeography: towards understanding the drivers of species diversification and persistence. Journal of Biogeography 40, 1013–1022.
| ‘Next generation’ biogeography: towards understanding the drivers of species diversification and persistence.Crossref | GoogleScholarGoogle Scholar |
Lischer HE, Excoffier L, Heckel G (2014) Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of Microtus voles. Molecular Biology and Evolution 31, 817–831.
| Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of Microtus voles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12jsrY%3D&md5=2558230548c5e9dedd16762f24234088CAS |
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17, 10–12.
| Cutadapt removes adapter sequences from high-throughput sequencing reads.Crossref | GoogleScholarGoogle Scholar |
McCormack JE, Maley JM, Hird SM, Derryberry EP, Graves GR, Brumfield RT (2012) Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences. Molecular Phylogenetics and Evolution 62, 397–406.
| Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences.Crossref | GoogleScholarGoogle Scholar |
McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution 66, 526–538.
| Applications of next-generation sequencing to phylogeography and phylogenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFajtbs%3D&md5=f4d3a03b966e14f6ca5335470b39a8fcCAS |
Meyer M, Kircher M (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols 2010, pdb.prot5448
| Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Crossref | GoogleScholarGoogle Scholar |
Miller MRR, Dunham JPP, Amores A, Cresko WAA, Johnson EAA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research 17, 240–248.
| Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFKis7w%3D&md5=4b9c32723698016ac46a44e1de48d293CAS |
Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C, Li T, Sterck L, Vanneste K, Murat F, Soler M, San Clemente H, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510, 356–362.
| The genome of Eucalyptus grandis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslGhsL8%3D&md5=96d1e3aef2a80f057c52f11786b55fe3CAS |
Ndlovu J, Richardson DM, Wilson JR, O’Leary M, Le Roux JJ (2013) Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure. Annals of Botany 111, 895–904.
| Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure.Crossref | GoogleScholarGoogle Scholar |
Ottewell KM, Bickerton D, Lowe AJ (2011) Can a seed bank provide demographic and genetic rescue in a declining population of the endangered shrub Acacia pinguifolia? Conservation Genetics 12, 669–678.
| Can a seed bank provide demographic and genetic rescue in a declining population of the endangered shrub Acacia pinguifolia? Crossref | GoogleScholarGoogle Scholar |
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135
| Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVeksrY%3D&md5=5ed68df1c7a3bbc450bf2b54a7793bf0CAS |
Pobke K (2007) Draft recovery plan for 23 threatened flora taxa on Eyre Peninsula, South Australia 2007–2012. Department for Environment and Heritage, Adelaide, SA, Australia.
Pukk L, Ahmad F, Hasan S, Kisand V, Gross R, Vasemägi A (2015) Less is more: extreme genome complexity reduction with ddRAD using Ion Torrent semiconductor technology. Molecular Ecology Resources 15, 1145–1152.
| Less is more: extreme genome complexity reduction with ddRAD using Ion Torrent semiconductor technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSmtLrM&md5=326192463dce97c7aac6010606c0c412CAS |
Ree RH, Hipp AL (2015) Inferring phylogenetic history from restriction site associated DNA (RADseq). In ‘Next-Generation Sequencing in Plant Systematics’. (Eds E Hörandl, MS Appelhans) Regnum Vegetabile, pp. 181–204. (International Association for Plant Taxonomy, IAPT: Königstein, Germany)
Reitzel AM, Herrera S, Layden M, Martindale M, Shank T (2013) Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Molecular Ecology 22, 2953–2970.
| Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12nu7g%3D&md5=88ced494b5cb3b7f62f4989feedd6298CAS |
Rubin BE, Ree RH, Moreau CS (2012) Inferring phylogenies from RAD sequence data. PLoS One 7, e33394
| Inferring phylogenies from RAD sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFektrg%3D&md5=bdd2f4125aeffad56ae0294cb3f06cc1CAS |
Rutherford S, Wilson PG, Rossetto M, Bonser SP (2015) Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification. Australian Systematic Botany 28, 326–354.
| Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification.Crossref | GoogleScholarGoogle Scholar |
Sass C, Iles WJ, Barrett CF, Smith SY, Specht CD (2016) Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage. PeerJ 4, e1584
| Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage.Crossref | GoogleScholarGoogle Scholar |
Schaal B, Hayworth D, Olsen K, Rauscher J, Smith W (1998) Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7, 465–474.
| Phylogeographic studies in plants: problems and prospects.Crossref | GoogleScholarGoogle Scholar |
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
| RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsbc%3D&md5=14c04a21f4955d6cf18f9de574bb4dfeCAS |
Steane DA, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
| ITS sequence data resolve higher level relationships among the eucalypts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFWrsbk%3D&md5=574381dedb74ecead617ecba3ce0a392CAS |
Thornhill AH, Ho SY, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93, 29–43.
| Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny.Crossref | GoogleScholarGoogle Scholar |
van Orsouw NJ, Hogers RC, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, Van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2, e1172
| Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes.Crossref | GoogleScholarGoogle Scholar |
Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods 5, 247–252.
| SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFOmtLk%3D&md5=6e4e0ef8c2590f50ecd4e8f1d55ae7cbCAS |
Viricel A, Pante E, Dabin W, Simon-Bouhet B (2014) Applicability of RAD-tag genotyping for interfamilial comparisons: empirical data from two cetaceans. Molecular Ecology Resources 14, 597–605.
| Applicability of RAD-tag genotyping for interfamilial comparisons: empirical data from two cetaceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Sgt70%3D&md5=f78d40a10c35e4ba7bbf429f6eb993e6CAS |
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
| AFLP: a new technique for DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=4a692bf86b167cdd52f213bf244953b6CAS |
Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology 22, 787–798.
| Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOrt7k%3D&md5=46096be8860c887c6e964c2ccc1efc2dCAS |
Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, Pellicer J, Buggs RJ (2013) Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Molecular Ecology 22, 3098–3111.
| Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12nu78%3D&md5=8b6fbb1d87133419096016e76a13519dCAS |
Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America 101, 9915–9920.
| Diversity arrays technology (DArT) for whole-genome profiling of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVahur4%3D&md5=d8154d2386c7d1e6f279d86b1297397fCAS |
Zellmer AJ, Hanes MM, Hird SM, Carstens BC (2012) Deep phylogeographic structure and environmental differentiation in the carnivorous plant Sarracenia alata. Systematic Biology 61, 763–777.
| Deep phylogeographic structure and environmental differentiation in the carnivorous plant Sarracenia alata.Crossref | GoogleScholarGoogle Scholar |
Zohren J, Wang N, Kardailsky I, Borrell JS, Joecker A, Nichols RA, Buggs RJ (2016) Unidirectional diploid–tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers. Molecular Ecology 25, 2413–2426.
| Unidirectional diploid–tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers.Crossref | GoogleScholarGoogle Scholar |