Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

An integrative revision of Dinckleria (Plagiochilaceae: Jungermanniopsida)

Matt A. M. Renner A F , Margaret M. Heslewood A , Mahwash Jamy B , Simon D. F. Patzak B , John J. Engel C , David S. Glenny D , Matt J. von Konrat C , Alfons Schäfer-Verwimp E and Jochen Heinrichs B
+ Author Affiliations
- Author Affiliations

A Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.

B Ludwig Maximilian University, Faculty of Biology, Department of Biology and Geobio-Center, Menzinger Straße 67, D-80638 Munich, Germany.

C The Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605-2496, USA.

D Landcare Research – Manaaki Whenua, PO Box 69040, Lincoln 7640, New Zealand.

E Mittlere Letten 11, D-88634 Herdwangen-Schönach, Germany.

F Corresponding author. Email: matt.renner@rbgsyd.nsw.gov.au

Australian Systematic Botany 29(2) 95-118 https://doi.org/10.1071/SB16003
Submitted: 4 February 2016  Accepted: 5 May 2016   Published: 17 October 2016

Abstract

On the basis of variation in molecular sequence data and morphology, three species are recognised within Dinckleria. The generitype D. pleurata is widespread in Tasmania and New Zealand and has outlier populations in Victoria, and in rainforests around the New South Wales–Queensland border. Dinckleria fruticella is endemic to New Zealand, records of this species from Tasmania and Queensland are based on misidentifications. The widespread Malesian species Plagiochila singularis is transferred to Dinckleria, and newly reported for Australia and Vanuatu. In Australia, this species is known by two collections, one from the Atherton Tableland the other from the Paluma Range. Dinckleria can be distinguished from other genera of Plagiochilaceae by the presence of papillae on leaf-cell surfaces in combination with monomorphic leafy shoots arising from a basal stolon, the stolons originating by ventral-intercalary branching, presence of cell surface wax, and the restriction of rhizoids to the ventral merophyte.


References

Adams DC, Otárola-Castillo E (2013) Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4, 393–399.
Geomorph: an R package for the collection and analysis of geometric morphometric shape data.Crossref | GoogleScholarGoogle Scholar |

Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In ‘Information Theory: Proceedings of the 2nd International Symposium’, 2–8 September 1971, Tsahkadsor, Armenia, USSR. (Eds BN Petrov, F Csáki) pp. 267–281. (Akademiai Kiado: Budapest)

Bischler H, Boisselier-Dubayle M-C, Fontinha S, Lambourdiere J (2006) Species boundaries in European and Macaronesian Porella L. (Jungermanniales, Porellaceae). Cryptogamie Bryologie 27, 35–57.

Campbell V, Legendre P, Lapointe F-J (2011) The performance of the congruence among distance matrices (CADM) test in phylogenetic analysis. BMC Evolutionary Biology 11, 64
The performance of the congruence among distance matrices (CADM) test in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 21388552PubMed |

Chen H, Strand M, Norenburg JL, Sun S, Kajihara H, Chernyshev AV, Maslakova SA, Sundberg P (2010) Statistical parsimony networks and species assemblages in cepahlotrichid nemerteans (Nemertea). PLoS One 5, e12885
Statistical parsimony networks and species assemblages in cepahlotrichid nemerteans (Nemertea).Crossref | GoogleScholarGoogle Scholar | 20877627PubMed |

Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=e0ee99b2f5c0bab19812bf67ad6a9f26CAS | 11050560PubMed |

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing Nature Methods 9, 772
jModelTest 2: more models, new heuristics and parallel computingCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=05295880fd404aca6e6c641989659034CAS | 22847109PubMed |

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113
MUSCLE: a multiple sequence alignment method with reduced time and space complexity.Crossref | GoogleScholarGoogle Scholar | 15318951PubMed |

Engel JJ (2009) Studies on Lophocoleaceae (Hepaticae). XVIII. Stolonivector Engel in New Zealand, including two new species, together with comments on generic endemism of Austral Hepaticae. Nova Hedwigia 88, 335–346.
Studies on Lophocoleaceae (Hepaticae). XVIII. Stolonivector Engel in New Zealand, including two new species, together with comments on generic endemism of Austral Hepaticae.Crossref | GoogleScholarGoogle Scholar |

Engel JJ (2010) Austral Hepaticae 45. A monograph of the genus Chiloscyphus Corda (Lophocoleaceae) for Australasia. Fieldiana. Botany 48, 1–206.
Austral Hepaticae 45. A monograph of the genus Chiloscyphus Corda (Lophocoleaceae) for Australasia.Crossref | GoogleScholarGoogle Scholar |

Engel JJ, Heinrichs J (2008) Studies of New Zealand Hepaticae. 39. Dinckleria Trev. an older name for Proskauera Heinrichs and Engel. Cryptogamie Bryologie 29, 193–194.

Ezard T, Fujisawa T, Barraclough TG (2009) Splits: species’ limits by threshold statistics. Available at http://R-Forge.R-project.org/projects/splits/ [Verified 22 June 2016]

Fontaneto D, Flot J-F, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45, 433–451.
Guidelines for DNA taxonomy, with a focus on the meiofauna.Crossref | GoogleScholarGoogle Scholar |

Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets.Crossref | GoogleScholarGoogle Scholar | 23681854PubMed |

Glenny D, Engel JJ, He-Nygrén X (2009) The systematic identity of Chiloscyphus trichocoleoides, a new liverwort species from New Zealand, uncovered by morphological and molecular evidence. Journal of Bryology 31, 93–105.
The systematic identity of Chiloscyphus trichocoleoides, a new liverwort species from New Zealand, uncovered by morphological and molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Grolle R, Seppelt RD (1986) Seppeltia, a new leafy genus of Metzgeriales from Macquarie Island. The Journal of the Hattori Botanical Laboratory 60, 275–282.

Groth H, Heinrichs J (2003) Reinstatement of Chiastocaulon Carl (Plagiochilaceae), based on evidence from nuclear ribosomal ITS and chloroplast gene rps4 sequences. Plant Biology 5, 615–622.
Reinstatement of Chiastocaulon Carl (Plagiochilaceae), based on evidence from nuclear ribosomal ITS and chloroplast gene rps4 sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVKjtbs%3D&md5=22fee34f6b8c3e5de662818f1642ee77CAS |

Guindon S, Gascuel O (2003) A simple, fast, and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Hamilton CA, Hendrixson BE, Brewer MS, Bond JE (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution 71, 79–93.
An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGktrY%3D&md5=fb5b2b3600416ebb503746fd1b782eecCAS | 24280211PubMed |

Hart MW, Sunday J (2007) Things fall apart: biological species form unconnected parsimony networks. Biology Letters 3, 509–512.
Things fall apart: biological species form unconnected parsimony networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2hs77K&md5=cfdd4e45ea8db94f4dfcaca2af6c992fCAS | 17650475PubMed |

Heinrichs J (2002) A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoideae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine lineages. Bryophytorum Bibliotheca 58, 1–184.

Heinrichs J, Reiner-Drehwald E (2012) Surface wax in Dinckleria, Lejeunea and Mytilopsis. Cryptogamie Bryologie 33, 81–86.
Surface wax in Dinckleria, Lejeunea and Mytilopsis. CryptogamieCrossref | GoogleScholarGoogle Scholar |

Heinrichs J, Anton H, Gradstein SR, Mues R, Holz I (2000) Surface wax, a new taxonomic feature in Plagiochilaceae. Plant Systematics and Evolution 225, 225–233.
Surface wax, a new taxonomic feature in Plagiochilaceae.Crossref | GoogleScholarGoogle Scholar |

Heinrichs J, Linder M, Groth H, Hentschel J, Feldberg K, Renker C, Engel JJ, von Konrat MJ, Long DG, Schneider H (2006) Goodbye or welcome Gondwana? Insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales). Plant Systematics and Evolution 258, 227–250.
Goodbye or welcome Gondwana? Insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales).Crossref | GoogleScholarGoogle Scholar |

Heinrichs J, Dong S, Schäfer-Verwimp A, Pócs T, Feldberg K, Czumaj A, Schmidt AR, Reitner J, Renner MAM, Hentschel J, Stech M, Schneider H (2013) Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): evidence for a Neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS One 8, e82547
Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): evidence for a Neotropical origin, uneven distribution of sexual systems and insufficient taxonomy.Crossref | GoogleScholarGoogle Scholar | 24367522PubMed |

Inoue H (1984) ‘The genus Plagiochila (Dum.) Dum. in Southeast Asia.’ (Academia Scientific Book: Tokyo)

Inoue H (1986) Notes on Plagiochilaceae XIII. Review of the genus Plagiochila (Dum.) Dum. in mainland Australia. The Journal of the Hattori Botanical Laboratory 60, 357–378.

Inoue H, Schuster RM (1971) A monograph of the New Zealand and Tasmanian Plagiochilaceae. The Journal of the Hattori Botanical Laboratory 34, 1–225.

Meagher D (2008) Bryological miscellanies from MELU. Australasian Bryological Newsletter 55, 9–10.

Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V (2012) Integrative taxonomy successfully resolves the pseudo-cryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon 61, 1180–1198.

Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V (2013) Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validataed by morphological and molecular approaches. Taxon 62, 1133–1152.
Unnoticed diversity within the disjunct moss Orthotrichum tenellum s.l. validataed by morphological and molecular approaches.Crossref | GoogleScholarGoogle Scholar |

Mutanen M, Kekkonen M, Prosser SWJ, Hebert PDN, Kaila L (2015) One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Molecular Ecology Resources 15, 967–984.
One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVGnu7rM&md5=ffb2049d9a146fe42dc1b4e307e7260fCAS | 25524367PubMed |

Nagalingum NS, Knerr N, Mishler BD, Cargill DC (2014) Overlapping fern and bryophyte hotspots: assessing ferns as a predictor of bryophyte diversity. Telopea 17, 383–392.
Overlapping fern and bryophyte hotspots: assessing ferns as a predictor of bryophyte diversity.Crossref | GoogleScholarGoogle Scholar |

Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
APE: analysis of phylogenetics and evolution in R language.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eitg%3D%3D&md5=6916b7d175804198fb11c011fc70ac01CAS | 14734327PubMed |

Pätsch R, Hentschel J, Linares-Palomino R, Zhu R-L, Heinrichs J (2010) Diversification and taxonomy of the liverwort Jubula Dumort. (Jungermanniopsida: Porellales) inferred from nuclear and chloroplast DNA sequences. Systematic Botany 35, 6–12.
Diversification and taxonomy of the liverwort Jubula Dumort. (Jungermanniopsida: Porellales) inferred from nuclear and chloroplast DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Patzak SDF, Renner MAM, Schäfer-Verwimp A, Feldberg K, Heslewood MM, Peralta DF, Souza A, Schneider H, Heinrichs J (2016) A phylogeny of Lophocoleaceae–Plagiochilaceae–Brevianthaceae and a revised classification of Plagiochilaceae. Organisms, Diversity & Evolution
A phylogeny of Lophocoleaceae–Plagiochilaceae–Brevianthaceae and a revised classification of Plagiochilaceae.Crossref | GoogleScholarGoogle Scholar | [Published online 11 January 2016]

Perrie LR, Ohlsen DJ, Shepard LD, Garrett M, Brownsey PJ, Bayly MJ (2010) Tasmanican and Victorian populations of the fern Asplenium hookerianum result from independent dispersals from New Zealand. Australian Systematic Botany 23, 387–392.
Tasmanican and Victorian populations of the fern Asplenium hookerianum result from independent dispersals from New Zealand.Crossref | GoogleScholarGoogle Scholar |

Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |

Pons J, Fujisawa T, Claridge EM, Savill RA, Barraclough TG, Vogler AP (2011) Deep mt subdivision within Linnean species in an endemic radiation of tiger beetles from New Zealand (genus Neocicindela). Molecular Phylogenetics and Evolution 59, 251–262.
Deep mt subdivision within Linnean species in an endemic radiation of tiger beetles from New Zealand (genus Neocicindela).Crossref | GoogleScholarGoogle Scholar | 21338699PubMed |

Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, automatic barcode gap discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=b37e66512cc7bd65a0e7f8fa8dfd81e9CAS | 21883587PubMed |

Renner MAM (2010) Another new Austrolejeunea (Lejeuneaceae) from New Zealand’s subalpine environs. The Bryologist 113, 781–787.
Another new Austrolejeunea (Lejeuneaceae) from New Zealand’s subalpine environs.Crossref | GoogleScholarGoogle Scholar |

Renner MAM, Brown EA, Wardle GM (2009) Species recognition on the basis of a single specimen: Nephelolejeunea carcharias sp. nov. (Lejeunaceae: Jungermanniopsida). Systematic Botany 34, 615–624.
Species recognition on the basis of a single specimen: Nephelolejeunea carcharias sp. nov. (Lejeunaceae: Jungermanniopsida).Crossref | GoogleScholarGoogle Scholar |

Renner MAM, Brown EA, Wardle GM (2011) The Lejeunea tumida species group is positively polyphyletic. Australian Systematic Botany 24, 10–18.
The Lejeunea tumida species group is positively polyphyletic.Crossref | GoogleScholarGoogle Scholar |

Renner MAM, Brown EA, Wardle GM (2013a) Averaging v. outlier removal. Decrypting variance among cryptic Lejeunea species (Lejeuneaceae: Jungermanniaopsida) using geometric morphometrics. Australian Systematic Botany 26, 13–30.
Averaging v. outlier removal. Decrypting variance among cryptic Lejeunea species (Lejeuneaceae: Jungermanniaopsida) using geometric morphometrics.Crossref | GoogleScholarGoogle Scholar |

Renner MAM, Devos N, Patiño J, Brown EA, Orme A, Elgey M, Wilson TC, Gray LJ, von Konrat MJ (2013b) Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species. PhytoKeys 27, 1–113.
Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species.Crossref | GoogleScholarGoogle Scholar |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=ebb7f79ca3abc332a555ac1fa9492884CAS | 12912839PubMed |

Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

So ML (2001) Plagiochila (Hepaticae, Plagiochilaceae) in China. Systematic Botany Monographs 60, 1–214.
Plagiochila (Hepaticae, Plagiochilaceae) in China.Crossref | GoogleScholarGoogle Scholar |

Tajima F, Nei M (1984) Estimation of evolutionary distances between nucleotide sequences. Molecular Biology and Evolution 1, 269–285.

Talavera G, Dinca V, Vila R (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4, 1101–1110.
Factors affecting species delimitations with the GMYC model: insights from a butterfly survey.Crossref | GoogleScholarGoogle Scholar |

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=f96b9a6ff756fc575d7627d1961f5101CAS | 24132122PubMed |

Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.

von Konrat MJ, Braggins JE (2005) Frullania wairua, a new and seemingly rare liverwort species from Northland, New Zealand. New Zealand Journal of Botany 43, 885–893.
Frullania wairua, a new and seemingly rare liverwort species from Northland, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Wilson R, Gradstein SR, Heinrichs J, Groth H, Ilkiu-Borges AL, Hartmann FA (2004) Phylogeny of the Lejeuneaceae: a cladistics analysis of chloroplast gene rbcL sequences and morphology with preliminary comments on the mitochondrial nad4–2 spacer region. Monographs in Systematic Botany from the Missouri Botanical Garden 98, 189–202.

Yu Y, Heinrichs J, Zhu R-L, Schneider H (2013) Empirical evidence supporting frequent cryptic speciation in epiphyllous liverworts: a case study of the Cololejeunea lanciloba complex. PLoS One 8, e84124
Empirical evidence supporting frequent cryptic speciation in epiphyllous liverworts: a case study of the Cololejeunea lanciloba complex.Crossref | GoogleScholarGoogle Scholar | 24367634PubMed |

Zander RH (1997) On mounting delicate bryophytes in glycerol. The Bryologist 100, 380–382.
On mounting delicate bryophytes in glycerol.Crossref | GoogleScholarGoogle Scholar |