The trichotomosulcate asparagoids: pollen morphology of Hemerocallidaceae in relation to systematics and pollination biology
Carol A. Furness A C , John G. Conran B , Thomas Gregory A and Paula J. Rudall AA Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
B The University of Adelaide, ACEBB, EES, Benham Building, DX 650 312, Adelaide, SA 5005, Australia.
C Corresponding author. Email: c.furness@kew.org
Australian Systematic Botany 26(6) 393-407 https://doi.org/10.1071/SB13046
Submitted: 2 November 2013 Accepted: 29 January 2014 Published: 27 March 2014
Abstract
We examined pollen of 19 genera of Hemerocallidaceae by using scanning electron microscopy (SEM), and one genus (Dianella) by using transmission electron microscopy (TEM). Pollen was generally small in size, with a rounded triangular outline when hydrated, and a characteristic three-armed aperture, a distal trichotomosulcus. The pollen surface was finely sculptured and the exine was thin. Microreticulate pollen is a potential synapomorphy for several species of the ‘crown phormioid’ subclade recognised in molecular analyses. Perforate and fossulate pollen supports a relationship between several species of Dianella. Microrugulate pollen is more frequent in the johnsonioids than in the phormioids. Hemerocallis is distinguished by elongated monosulcate pollen, a relatively thick exine with a pronounced reticulate surface, and large globules of attached pollenkitt. We hypothesise that Hemerocallidaceae are ancestrally buzz-pollinated, and their pollen morphology is an adaptation to this pollination type. A reversal to butterfly or moth pollination occurred in Hemerocallis, with associated changes in pollen morphology.
References
APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141, 399–436.| An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II.Crossref | GoogleScholarGoogle Scholar |
APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105–121.
| An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Crossref | GoogleScholarGoogle Scholar |
Arber A (1925) ‘Monocotyledons, a Morphological Study.’ (Cambridge University Press: Cambridge, UK)
Bernhardt P (1995) The floral ecology of Dianella caerulea var. assera (Phormiaceae). Cunninghamia 4, 9–20.
Brown M, Downs CT, Johnson SD (2010) Pollination of red-hot poker Kniphofia laxiflora (Asphodelaceae) by sunbirds. South African Journal of Botany 76, 460–464.
| Pollination of red-hot poker Kniphofia laxiflora (Asphodelaceae) by sunbirds.Crossref | GoogleScholarGoogle Scholar |
Buchmann SL (1983) Buzz pollination in angiosperms. In ‘Handbook of Experimental Pollination Biology’. (Eds CE Jones, RJ Little) pp. 73–113. (Van Nostrand Reinhold: New York)
Buchmann SL, Hurley JP (1978) A biophysical model for buzz pollination in angiosperms. Journal of Theoretical Biology 72, 639–657.
| A biophysical model for buzz pollination in angiosperms.Crossref | GoogleScholarGoogle Scholar | 672247PubMed |
Chanda S, Ghosh K (1976) Pollen morphology and its evolutionary significance in Xanthorrhoeaceae. In ‘The Evolutionary Significance of the Exine’. (Ed. IK Ferguson, J Muller) pp. 527–559. (Academic Press: London)
Chase MW, Reveal JL, Fay MF (2009) A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society 161, 132–136.
| A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae.Crossref | GoogleScholarGoogle Scholar |
Clifford HT, Henderson RJF, Conran JG (1998) Hemerocallidaceae. In ‘The Families and Genera of Vascular Plants. Vol. III. Flowering Plants. Monocotyledons – Lilianae (Except Orchidaceae)’. (Ed. K Kubitzki) pp. 245–253. (Springer: Berlin)
Craig JL (1989) Seed set in Phormium: interactive effects of pollinator behaviour, pollen carryover and pollen source. Oecologia 81, 1–5.
| Seed set in Phormium: interactive effects of pollinator behaviour, pollen carryover and pollen source.Crossref | GoogleScholarGoogle Scholar |
Craig JL, Stewart AM (1988) Reproductive biology of Phormium tenax: a honeyeater-pollinated species. New Zealand Journal of Botany 26, 453–463.
| Reproductive biology of Phormium tenax: a honeyeater-pollinated species.Crossref | GoogleScholarGoogle Scholar |
Cranwell LM (1953) New Zealand pollen studies. The monocotyledons. Bulletin of the Auckland Institute and Museum 3, 1–91.
Dahlgren RMT, Clifford HT, Yeo PF (1985) ‘The Families of the Monocotyledons.’ (Springer: Berlin)
de Lambert B (1975) Herpolirion novae-zelandiae. Canterbury Botanical Society Journal 8, 32
Devey DS, Leitch I, Rudall PJ, Pires JC, Pillon Y, Chase MW (2006) Systematics of Xanthorrhoeaceae sensu lato, with an emphasis on Bulbine. Aliso 22, 345–351.
Díaz Lifante Z (1996a) Pollen morphology of Asphodelus L. (Asphodelaceae): taxonomic and phylogenetic inferences at the infrageneric level. Grana 35, 24–32.
| Pollen morphology of Asphodelus L. (Asphodelaceae): taxonomic and phylogenetic inferences at the infrageneric level.Crossref | GoogleScholarGoogle Scholar |
Díaz Lifante Z (1996b) Inter- and intraspecific variation in pollen size in Asphodelus section Asphodelus (Asphodelaceae). Grana 35, 97–103.
| Inter- and intraspecific variation in pollen size in Asphodelus section Asphodelus (Asphodelaceae).Crossref | GoogleScholarGoogle Scholar |
Díaz Lifante Z, Díez MJ, Fernández I (1990) Morfología polínica de las subfamilias Melanthioideae y Asphodeloideae (Liliaceae) en la Península Ibérica y su importantcía taxonónomica. Lagascalia 16, 211–225.
Duncan DH, Nicotra AB, Cunningham SA (2004) High self-pollen transfer and low fruit set in buzz-pollinated Dianella revoluta (Phormiaceae). Australian Journal of Botany 52, 185–193.
| High self-pollen transfer and low fruit set in buzz-pollinated Dianella revoluta (Phormiaceae).Crossref | GoogleScholarGoogle Scholar |
Ferguson DK, Lee DE, Bannister JM, Zetter R, Jordan GJ, Vavra N, Mildenhall DC (2010) The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene–Early Miocene gore lignite measures, southern New Zealand. International Journal of Coal Geology 83, 173–181.
| The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene–Early Miocene gore lignite measures, southern New Zealand.Crossref | GoogleScholarGoogle Scholar |
Furness CA, Rudall PJ (1998) The tapetum and systematics in monocotyledons. Botanical Review 64, 201–239.
Furness CA, Rudall PJ (2001) Pollen and anther characters in monocot systematics. Grana 40, 17–25.
| Pollen and anther characters in monocot systematics.Crossref | GoogleScholarGoogle Scholar |
Graham SW, Zgurski JM, McPherson MA, Cherniawsky DM, Saarela JM, Horne EFC, Smith SY, Wong WA, O’Brien HE, Biron VL, Pires JC, Olmstead RG, Chase MW, Rai HS (2006) Robust inference of monocot deep phylogeny using an expanded multigene plastid dataset. Aliso 22, 3–21.
Handa K, Tsuji S, Tamura MN (2001) Pollen morphology of Japanese Asparagales and Liliales (Lilianae). Japanese Journal of Historical Botany 9, 85–125.
Hargreaves AL, Harder LD, Johnson SD (2008) Aloe inconspicua: the first record of an exclusively insect-pollinated aloe. South African Journal of Botany 74, 606–612.
| Aloe inconspicua: the first record of an exclusively insect-pollinated aloe.Crossref | GoogleScholarGoogle Scholar |
Hargreaves AL, Harder LD, Johnson SD (2012) Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees. Annals of Botany 109, 761–772.
| Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees.Crossref | GoogleScholarGoogle Scholar | 22278414PubMed |
Harley MM (2004) Triaperturate pollen in the monocotyledons: configurations and conjectures. Plant Systematics and Evolution 247, 75–122.
| Triaperturate pollen in the monocotyledons: configurations and conjectures.Crossref | GoogleScholarGoogle Scholar |
Henderson RJF (1987a) Liliaceae, 29. Caesia. In ‘Flora of Australia. Vol. 45: Hydatellaceae to Liliaceae’. (Ed. AS George) pp. 281–288. (Australian Government Publishing Service: Canberra)
Henderson RJF (1987b) Liliaceae, 32. Corynotheca. In ‘Flora of Australia. Vol. 45: Hydatellaceae to Liliaceae’. (Ed. AS George) pp. 299–306. (Australian Government Publishing Service: Canberra)
Hewson HJ (1987) Liliaceae, 20. Herpolirion. In ‘Flora of Australia. Vol. 45: Hydatellaceae to Liliaceae’. (Ed. AS George) p. 242. (Australian Government Publishing Service: Canberra)
Hirota SK, Nitta K, Kim Y, Kato A, Kawakubo N, Yasumoto AA, Yahara T (2012) Relative role of flower color and scent on pollinator attraction: experimental tests using F1 and F2 hybrids of daylily and nightlily. PLoS ONE 7, e39010
| Relative role of flower color and scent on pollinator attraction: experimental tests using F1 and F2 hybrids of daylily and nightlily.Crossref | GoogleScholarGoogle Scholar | 22720016PubMed |
Hopper SD (1999) Stypandra jamesii (Phormiaceae), a new Western Australian species endemic to granite outcrops. Nuytsia 13, 247–249.
Keighery GJ (1980) Bird pollination in south western Australia: a checklist. Plant Systematics and Evolution 135, 171–176.
| Bird pollination in south western Australia: a checklist.Crossref | GoogleScholarGoogle Scholar |
Keighery GJ (1984) The Johnsonieae (Liliaceae): biology and classification. Flora 175, 103–108.
Kosenko VN, Sventorzhetskaya OY (1999) Pollen morphology in the family Asphodelaceae (Aspodeleae, Kniphofieae). Grana 38, 218–227.
| Pollen morphology in the family Asphodelaceae (Aspodeleae, Kniphofieae).Crossref | GoogleScholarGoogle Scholar |
Nadot S, Forchoni A, Penet L, Sannier J, Ressayre A (2006) Links between early pollen development and aperture pattern in monocots. Protoplasma 228, 55–64.
| Links between early pollen development and aperture pattern in monocots.Crossref | GoogleScholarGoogle Scholar | 16937055PubMed |
Nadot S, Furness CA, Sannier J, Penet L, Triki-Teurtroy S, Albert B, Ressayre A (2008) Phylogenetic comparative analysis of microsporogenesis in angiosperms with a focus on monocots. American Journal of Botany 95, 1426–1436.
| Phylogenetic comparative analysis of microsporogenesis in angiosperms with a focus on monocots.Crossref | GoogleScholarGoogle Scholar | 21628150PubMed |
Nitta K, Yasumoto AA, Yahara T (2010) Variation of flower opening and closing times in F1and F2 hybrids of daylily (Hemerocallis fulva; Hemerocallidoideae) and nightlily (H. citrina). American Journal of Botany 97, 261–267.
| Variation of flower opening and closing times in F1and F2 hybrids of daylily (Hemerocallis fulva; Hemerocallidoideae) and nightlily (H. citrina).Crossref | GoogleScholarGoogle Scholar | 21622386PubMed |
Pires JC, Maureira IJ, Givnish TJ, Sytsma KJ, Seberg O, Petersen G, Davis JI, Stevenson DW, Rudall PJ, Fay MF, Chase MW (2006) Phylogeny, genome size, and chromosome evolution of Asparagales. Aliso 22, 287–304.
Punt W, Blackmore S, Nilsson S, Le Thomas A (1994) ‘Glossary of Pollen and Spore Terminology.’ (Laboratory of Palaeobotany and Palynology, University of Utrecht: Utrecht, the Netherlands)
Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143, 1–81.
| Glossary of pollen and spore terminology.Crossref | GoogleScholarGoogle Scholar |
Radulescu D (1973) Recherches morpho-palynologiques sur la famille Liliaceae. Acta Horti Botanici Bucurestiensis 1972–1973, 133–248.
Raine JI, Mildenhall DC, Kennedy EM (2011) New Zealand fossil spores and pollen: an illustrated catalogue, 4th edn. GNS Science Miscellaneous Series number 4. Available at http://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm [Verified 5 May 2013]
Roth JL, Walker JW, Walker AG (1987) The distribution and systematics of trichotomosulcate pollen within the lilialean complex. American Journal of Botany 74, 751
Rudall PJ (2001) Centrifixed anther attachment in monocotyledons. Kew Bulletin 56, 965–973.
| Centrifixed anther attachment in monocotyledons.Crossref | GoogleScholarGoogle Scholar |
Rudall PJ, Buzgo M (2002) Evolutionary history of the monocot leaf. In ‘Developmental Genetics and Plant Evolution’. (Eds QCB Cronk, RM Bateman, J Hawkins) pp. 432–458. (Taylor and Francis: London)
Rudall PJ, Furness CA, Chase MW, Fay MF (1997) Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Canadian Journal of Botany 75, 408–430.
| Microsporogenesis and pollen sulcus type in Asparagales (Lilianae).Crossref | GoogleScholarGoogle Scholar |
Schulze W (1975) Beiträge zur Taxonomie der Liliifloren I. Asphodelaceae. Wissenschaftliche Zeitschrift der Friedrich-Schiller Universität Jena Mathematisch-Naturwissenschaftliche 24, 403–415.
Schulze W (1982) Beiträge zur Taxonomie der Liliifloren IX. Anthericaceae. Wissenschaftliche Zeitschrift der Friedrich-Schiller Universität Jena Mathematisch-Naturwissenschaftlichte 31, 291–307.
Schulze W (1983) Beträge zur Taxonomie der Liliifloren XIV. Der Umfang der Amaryllidaceae. Wissenschaftliche Zeitschrift der Friedrich-Schiller Universität Jena Mathematisch-Naturwissenschaftlichte 32, 985–1003.
Schuster A, Noy-Meir I, Heyn CC, Dafni A (1993) Pollination-dependent female reproductive success in a self-compatible outcrosser, Asphodelus aestivus Brot. New Phytologist 123, 165–174.
| Pollination-dependent female reproductive success in a self-compatible outcrosser, Asphodelus aestivus Brot.Crossref | GoogleScholarGoogle Scholar |
Seberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, Fay MF, Devey DS, Jørgensen T, Sytsma KJ, Pillon Y (2012) Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. American Journal of Botany 99, 875–889.
| Phylogeny of the Asparagales based on three plastid and two mitochondrial genes.Crossref | GoogleScholarGoogle Scholar | 22539521PubMed |
Steyn EMA, Smith GF, Nilsson S, Grafstrom E (1998) Pollen morphology in Aloe (Aloaceae). Grana 37, 23–27.
| Pollen morphology in Aloe (Aloaceae).Crossref | GoogleScholarGoogle Scholar |
Thongpukdee A (1989) The taxonomic position of the genus Tricoryne R.Br. PhD Thesis, University of Queensland, St Lucia, Qld.
Wurdack KJ, Dorr LJ (2009) The South American genera of Hemerocallidaceae (Eccremis and Pasithea): two introductions to the New World. Taxon 58, 1122–1132.
Xiong Z-T, Chen S, Hong D, Luo Y (1998) Pollen morphology and its evolutionary significance in Hemerocallis (Liliaceae). Nordic Journal of Botany 18, 183–189.
| Pollen morphology and its evolutionary significance in Hemerocallis (Liliaceae).Crossref | GoogleScholarGoogle Scholar |
Yasumoto AA, Yahara T (2006) Post-pollination reproductive isolation between diurnally and nocturnally flowering daylilies, Hemerocallis fulva and Hemerocallis citrina. Journal of Plant Research 119, 617–623.
| Post-pollination reproductive isolation between diurnally and nocturnally flowering daylilies, Hemerocallis fulva and Hemerocallis citrina.Crossref | GoogleScholarGoogle Scholar | 16955375PubMed |