Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Morphological and molecular evidence supports the recognition of a new subspecies of the critically endangered Pityrodia scabra (Lamiaceae)

Kelly A. Shepherd A C , Andrew Perkins A , Joel Collins B , Margaret Byrne A and Kevin R. Thiele A
+ Author Affiliations
- Author Affiliations

A Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

B Eco Logical Australia, PO Box 237, West Perth, WA 6005, Australia.

C Corresponding author. Email: kelly.shepherd@dec.wa.gov.au

Australian Systematic Botany 26(1) 1-12 https://doi.org/10.1071/SB12009
Submitted: 7 March 2012  Accepted: 14 November 2012   Published: 12 April 2013

Abstract

Taxonomic delineation of closely related taxa can be difficult, particularly in regions such as southern Western Australia where a highly diverse flora exhibits complex patterns of subtle morphological variation and genetic structuring and where some taxa have highly disjunct populations. A combined approach utilising highly variable, non-coding chloroplast gene regions and morphological data is used here to help delimit cryptic taxa in the rare Western Australian species Pityrodia scabra A.S.George. The species comprises disjunct populations over 400 km of the Western Australian wheatbelt from near Wyalkatchem, Southern Cross and Lake Lefroy. Morphological features such as leaf phyllotaxy, calyx size and indumentum vary among the populations and provide some evidence for cryptic taxa. Phylogenetic analyses based on cpDNA psbA–trnH and psbD–trnT and nuclear external transcribed spacer (ETS) sequences revealed genetic distinctiveness between the Wyalkatchem (type) population and the Southern Cross and Lake Lefroy populations. This evidence, when used in conjunction with the morphological differences, provides support for the recognition of the new subspecies described herein as Pityrodia scabra subsp. dendrotricha K.A.Sheph. subsp. nov. This new subspecies is of conservation concern because it is currently known only from a few, isolated populations; the typical subspecies remains Critically Endangered because it comprises one extant population. A description of both subspecies, a key and images are provided.


References

Acevedo-Rosas R, Cameron K, Sosa V, Pell S (2004) A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ETS, ITS, RPL16, and trnL–F nucleotide sequences. American Journal of Botany 91, 1099–1104.
A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ETS, ITS, RPL16, and trnL–F nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslOltbg%3D&md5=b70aa3d38f3075d5510fa7721bcec1f0CAS | 21653465PubMed |

Avise JC, Wollenberg K (1997) Phylogenetics and the origin of species. Proceedings of the National Academy of Sciences of the United States of America 94, 7748–7755.
Phylogenetics and the origin of species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksl2nsLc%3D&md5=1970d2c78e913f84c31ea8890a81a5d0CAS | 9223259PubMed |

Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10, 449–463.
Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKmtb4%3D&md5=689162b29255849605e6c0dade2212e2CAS | 10051397PubMed |

Broadhurst L, Byrne M, Craven L, Lepschi B (2004) Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae). Australian Journal of Botany 52, 729–737.
Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Butcher R, Byrne M, Crayn D (2007) Evidence for convergent evolution among phylogenetically distant rare species Tetratheca (Elaeocarpaceae, formerly Tremandraceae). Australian Systematic Botany 20, 126–138.
Evidence for convergent evolution among phylogenetically distant rare species Tetratheca (Elaeocarpaceae, formerly Tremandraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFOlu7o%3D&md5=5da0199c739b5eb70989fee424a9812cCAS |

Byrne M (2003) Phylogenetics and the conservation of a diverse and ancient flora. Comptes Rendus Biologies 326, 73–79.
Phylogenetics and the conservation of a diverse and ancient flora.Crossref | GoogleScholarGoogle Scholar |

Byrne M (2007) Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Australian Journal of Botany 55, 316–325.
Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora.Crossref | GoogleScholarGoogle Scholar |

Byrne M (2008) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quaternary Science Reviews 27, 2576–2585.
Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography.Crossref | GoogleScholarGoogle Scholar |

Byrne M, Macdonald B, Coates DJ (1999) Divergence in the chloroplast genome and nuclear rDNA of the endangered plant Lambertia orbifolia (Proteaceae). Molecular Ecology 8, 1789–1796.
Divergence in the chloroplast genome and nuclear rDNA of the endangered plant Lambertia orbifolia (Proteaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVygtQ%3D%3D&md5=38ea067b02e3472ce03952b2893c8110CAS | 10620223PubMed |

Clarke LJ, Jardine D, Byrne M, Shepherd K, Lowe AJ (2012) Significant population genetic structure detected for a new and highly restricted species of Atriplex (Chenopodiaceae) from Western Australia, and implications for conservation management. Australian Journal of Botany 60, 32–41.
Significant population genetic structure detected for a new and highly restricted species of Atriplex (Chenopodiaceae) from Western Australia, and implications for conservation management.Crossref | GoogleScholarGoogle Scholar |

Coates D (2000) Defining conservation units in a rich and fragmented flora: implications for the management of genetic resources and evolutionary processes in south-west Australian plants. Australian Journal of Botany 48, 329–339.
Defining conservation units in a rich and fragmented flora: implications for the management of genetic resources and evolutionary processes in south-west Australian plants.Crossref | GoogleScholarGoogle Scholar |

Conn BJ, Streiber N, Brown EA, Henwood MJ, Olmstead RG (2009) Infrageneric phylogeny of Chloantheae (Lamiaceae) based on chloroplast ndhF and nuclear ITS sequence data. Australian Systematic Botany 22, 243–256.
Infrageneric phylogeny of Chloantheae (Lamiaceae) based on chloroplast ndhF and nuclear ITS sequence data.Crossref | GoogleScholarGoogle Scholar |

Conn BJ, Streiber N, Henwood MJ (2011) Synopsis of the tribe Chloantheae and new nomenclatural combinations in Pityrodia s.lat. (Lamiaceae). Australian Systematic Botany 24, 1–9.
Synopsis of the tribe Chloantheae and new nomenclatural combinations in Pityrodia s.lat. (Lamiaceae).Crossref | GoogleScholarGoogle Scholar |

Department of Environment and Conservation (2009) Wyalkatchem foxglove (Pityrodia scabra) recovery plan. Department of Environment and Conservation. (Perth, WA)

Department of the Environment, Water, Heritage and the Arts (2008) ‘Interim Biogeographic Regionalisation of Australia (IBRA). Version 6.1.’ Available at http://www.environment.gov.au/parks/nrs/science/bioregion-framework/ibra/index.html [Verified 18 August 2010]

Elliott CP, Byrne M (2004) Phylogenetics and the conservation of rare taxa in the Eucalyptus angustissima complex in Western Australia. Conservation Genetics 5, 39–47.
Phylogenetics and the conservation of rare taxa in the Eucalyptus angustissima complex in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Cmsg%3D%3D&md5=4564b5563cb5b51a2ee96858c5fdefb3CAS |

Felsenstein J (1985) Confidence-limits on Phylogenies – an approach using the bootstrap. Evolution 39, 783–791.
Confidence-limits on Phylogenies – an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

George AS (1967) Additions to the flora of Western Australia: ten miscellaneous new species. Journal of the Royal Society of Western Australia 50, 97–104.

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hop spot of biodiversity. Annual Review of Ecology and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hop spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

IUCN Standards and Petitions Subcommittee (2010) Guidelines for using the IUCN Red List categories and criteria, ver. 8.1. (IUCN Species Survival Commission) Available at http://intranet.iucn.org/webfiles/doc/SSC/RedList/RedListGuidelines.pdf [Verified 22 November 2012]

Linder CR, Goertzen LR, Heuvel BV, Francisco-Ortega J, Jansen RK (2000) The complete external transcribed spacer of 18S–26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molecular Phylogenetics and Evolution 14, 285–303.
The complete external transcribed spacer of 18S–26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFGjs78%3D&md5=593947445a02d77d919ebbe91b20a2c5CAS | 10679161PubMed |

Logacheva MD, Valiejo-Roman CM, Degtjareva GV, Stratton JM, Downie SR, Samigullin TH, Pimenov MG (2010) A comparison of nrDNA ITS and ETS loci for phylogenetic inference in the Umbelliferae: an example from tribe Tordylieae. Molecular Phylogenetics and Evolution 57, 471–476.
A comparison of nrDNA ITS and ETS loci for phylogenetic inference in the Umbelliferae: an example from tribe Tordylieae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWqsLrM&md5=f0e90b1aa46fe20e2027e1527956ca31CAS | 20538066PubMed |

Millar MA, Byrne M (in press) Cryptic divergent lineages of Pultenaea pauciflora M.B.Scott (Fabaceae, Mirbelieae) exhibit different patterns of genetic diversity. Biological Journal of the Linnaean Society

Millar MA, Byrne M, Coates D (2010) The maintenance of disparate levels of clonality, genetic diversity and genetic differentiation in disjunct subspecies of the rare Banksia ionthocarpa. Molecular Ecology 19, 4217–4227.
The maintenance of disparate levels of clonality, genetic diversity and genetic differentiation in disjunct subspecies of the rare Banksia ionthocarpa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagt77P&md5=e4dc0b6c8c92df5867ed8de65e20d715CAS |

Millar MA, Byrne M, O’Sullivan WO (2011) Defining entities in the Acacia saligna (Fabaceae) species complex using a population genetics approach. Australian Journal of Botany 59, 137–148.
Defining entities in the Acacia saligna (Fabaceae) species complex using a population genetics approach.Crossref | GoogleScholarGoogle Scholar |

Müller K (2005) SeqState – primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics 4, 65–69.

Munir AA (1979) A taxonomic revision of the genus Pityrodia (Chloanthaceae). Journal of the Adelaide Botanic Gardens 2, 1–138.

Oh S, Potter D (2005) Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. American Journal of Botany 92, 179–192.
Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kltr8%3D&md5=ff1078df92a1b6c5e2c02eeb2bc2c159CAS | 21652396PubMed |

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=8c4b31abf765d8f39ba94cadfa4d2599CAS | 18397919PubMed |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=d5b4bace3df34799957a4ebee94932a0CAS | 12912839PubMed |

Sampson JF, Byrne M (2012) Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biological Journal of the Linnaean Society 105, 218–230.
Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae).Crossref | GoogleScholarGoogle Scholar |

Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia. American Journal of Botany 84, 1120–1136.
Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFejuro%3D&md5=46ecc712907d665eef9c1bf2072b516cCAS | 21708667PubMed |

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142–166.
The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Klsbc%3D&md5=a7fa853ccf87524f741db3bedd2b992eCAS | 21652394PubMed |

Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94, 275–288.
Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOjsLg%3D&md5=3d59b036e6cf1b390ce0986ff587d1ccCAS | 21636401PubMed |

Shepherd KA (2007) Pityrodia iphthima (Lamiaceae), a new species associated with banded ironstone formations in Western Australia, with notes on two informally recognised Pityrodia. Nuytsia 17, 347–352.

Shepherd KA, Waycott M, Calladine A (2004) Radiation of the Australian Salicornioideae (Chenopodiaceae) – based on evidence from nuclear and chloroplast DNA sequences. American Journal of Botany 91, 1387–1397.
Radiation of the Australian Salicornioideae (Chenopodiaceae) – based on evidence from nuclear and chloroplast DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Klt7Y%3D&md5=19cee69882d934aebada68c469de069cCAS | 21652372PubMed |

Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntlKjtg%3D%3D&md5=93a3796ac8f4bfe826876a949e82425eCAS | 12118412PubMed |

Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. American Journal of Botany 85, 1301–1315.
The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFehtrY%3D&md5=1e5a0cd445cfb7d8139ab5a49045fe3bCAS | 21685016PubMed |

Smith MF (2010) ‘Declared Rare and Priority Flora List for Western Australia.’ (Department of Environment and Conservation: Perth, WA)

Swofford DL (2003) ‘PAUP. Phylogenetic Analysis Using Parsimony.’ (Sinauer Associates: Sunderland, MA)

Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28, 723–737.

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=644eb2bd008a6d9ad34b7f9e25a31b75CAS | 7984417PubMed |

Wiens JJ (1998) Combining data sets with different phylogenetic histories. Systematic Biology 47, 568–581.
Combining data sets with different phylogenetic histories.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zitlemtw%3D%3D&md5=982c14e17a3c11192a19d38ec89a7794CAS | 12066302PubMed |