Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Phylogenetic assessment of pollen characters in Myrtaceae

Andrew H. Thornhill A B and Michael D. Crisp A
+ Author Affiliations
- Author Affiliations

A Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: andrew.thornhill@anu.edu.au

Australian Systematic Botany 25(3) 171-187 https://doi.org/10.1071/SB11019
Submitted: 18 April 2011  Accepted: 28 February 2012   Published: 6 June 2012

Abstract

Identifying synapomorphic morphological characters is needed to select and then accurately place fossils as calibrations on a phylogeny in molecular-dating analyses. The plant family Myrtaceae, with 130 genera and 5500 species, has nine different pollen types, whereas the fossil pollen record of Myrtaceae, represented by the genus Myrtaceidites, putatively extends back to the Cretaceous and also contains at least nine distinct morphospecies. To reveal potential links between extant and fossil pollen, we optimised pollen characters scored from a recent family-wide review of extant Myrtaceae pollen using scanning electron microscopy (SEM) onto a phylogeny of 111 taxa inferred from two chloroplast (matK and ndhF) and one nuclear (internal transcribed spacer, ITS) loci. Our findings indicate the potential use of colpus morphology in diagnosing pollen types in Myrtaceae, whereas the majority of character states of exine pattern, presence of apocolpial island and pollen width appear to be homoplasious. The results of the present study have implications for understanding the relationship between fossil morphospecies and extant Myrtaceae species, and their reliable choice in molecular dating.


References

Barker NP, Weston PH, Rutschmann F, Sauquet H (2007) Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. Journal of Biogeography 34, 2012–2027.
Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana.Crossref | GoogleScholarGoogle Scholar |

Barth OM, Barbosa AF (1972) Catalogo sistematico do polens das plantas arborea do Brasil meridional XV Myrtaceae. Memorias do Instituto Oswaldo Cruz 70, 467–497.

Bayly MJ, Udovicic F, Gibbs AK, Parra-O C, Ladiges PY (2008) Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis. Cladistics 24, 131–146.
Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Biffin E, Harrington MG, Crisp MD, Craven LA, Gadek PA (2007) Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Molecular Phylogenetics and Evolution 43, 124–139.
Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGrsrs%3D&md5=93217708411ce863ff76fa5d0660b58bCAS |

Biffin E, Lucas EJ, Craven LA, da-Costa IR, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany 106, 79–93.
Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsLk%3D&md5=386011f8ff2a7d92808aa189c0ba3d05CAS |

Boltenhagen E (1976) Pollens et spores senoniens du Gabon. Cahiers de Micropaleontologie 3, 1–21.

Chalson JM, Martin HA (1995) The pollen morphology of some co-occurring species of the family Myrtaceae from the Sydney region. Proceedings of the Linnean Society of New South Wales 115, 163–191.

Cook LG, Gullan PJ (2004) The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha: Coccoidea: Eriococcidae). Biological Journal of the Linnean Society. Linnean Society of London 83, 441–452.
The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha: Coccoidea: Eriococcidae).Crossref | GoogleScholarGoogle Scholar |

Cowman PF, Bellwood DR, Herwerden LV (2009) Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Molecular Phylogenetics and Evolution 52, 621–631.
Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVaqtro%3D&md5=571534799271a984334429606c2fd058CAS |

Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91, 1666–1682.
Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits.Crossref | GoogleScholarGoogle Scholar |

Crisp MD, Cook LG (2005) Do early branching lineages signify ancestral traits? Trends in Ecology & Evolution 20, 122–128.
Do early branching lineages signify ancestral traits?Crossref | GoogleScholarGoogle Scholar |

Cunningham CW, Omland KE, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology & Evolution 13, 361–366.
Reconstructing ancestral character states: a critical reappraisal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itF2lug%3D%3D&md5=ea7c5c6a99668b04e6bcbe6da56fb377CAS |

Dessein S, Ochoterena H, De Block P, Lens F, Robbrecht E, Schols P, Smets E, Vinckier S, Huysmans S (2005) Palynological characters and their phylogenetic signal in Rubiaceae. Botanical Review 71, 354–414.
Palynological characters and their phylogenetic signal in Rubiaceae.Crossref | GoogleScholarGoogle Scholar |

Doyle JA (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44, 227–251.
Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Doyle JA (2009) Evolutionary significance of granular exine structure in the light of phylogenetic analyses. Review of Palaeobotany and Palynology 156, 198–210.
Evolutionary significance of granular exine structure in the light of phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Doyle JA, Donoghue MJ (1993) Phylogenies and angiosperm diversification. Paleobiology 19, 141–167.

Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) ‘Geneious v4.7.’ Available at http://www.geneious.com/ [Verified 6 March 2010].

Edwards RD, Craven LA, Crisp MD, Cook LG (2010) Melaleuca revisited: cpDNA and morphological data confirm that Melaleuca L. (Myrtaceae) is not monophyletic. Taxon 59, 744–754.

Gadek PA, Martin HA (1981) Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance. Australian Journal of Botany 29, 159–184.
Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance.Crossref | GoogleScholarGoogle Scholar |

Gadek PA, Martin HA (1982) Exine ultrastructure of Myrtaceous pollen. Australian Journal of Botany 30, 75–86.
Exine ultrastructure of Myrtaceous pollen.Crossref | GoogleScholarGoogle Scholar |

Goloboff PA, Mattoni CI, Quinteros AS (2006) Continuous characters analyzed as such. Cladistics 22, 589–601.
Continuous characters analyzed as such.Crossref | GoogleScholarGoogle Scholar |

Hermsen EJ, Nixon KC, Crepet WL (2006) The impact of extinct taxa on understanding the early evolution of angiosperm clades: an example incorporating fossil reproductive structures of Saxifragales. Plant Systematics and Evolution 260, 141–169.

Johnson LAS, Briggs BG (1984) Myrtales and Myrtaceae – A phylogenetic analysis. Annals of the Missouri Botanical Garden 71, 700–756.
Myrtales and Myrtaceae – A phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Krell FT, Cranston PS (2004) Which side of the tree is more basal? Systematic Entomology 29, 279–281.
Which side of the tree is more basal?Crossref | GoogleScholarGoogle Scholar |

Ladd PG, Parnell JAN, Thompson G (2000) The morphology of pollen and anthers in an unusual myrtaceous genus (Verticordia). In ‘Pollen and spores: morphology and biology’. (Eds MM Harley, CM Morton, S Blackmore) pp. 325–347. (Royal Botanic Gardens, Kew: London)

Lieu J, Melhem TS (1973) Palinologia em Myrtaeae. Hoehnea 3, 1–11.

Lu L, Fritsch PW, Wang H, Li H, Li D, Chen J (2009) Pollen morphology of Gaultheria L. and related genera of subfamily Vaccinioideae: taxonomic and evolutionary significance. Review of Palaeobotany and Palynology 154, 106–123.
Pollen morphology of Gaultheria L. and related genera of subfamily Vaccinioideae: taxonomic and evolutionary significance.Crossref | GoogleScholarGoogle Scholar |

Macphail MK (1996) Neogene environments in Australia. 1. Re-evaluation of microfloras associated with important early Pliocene marsupial remains at Grange Burn, southwest Victoria. Review of Palaeobotany and Palynology 92, 307–328.
Neogene environments in Australia. 1. Re-evaluation of microfloras associated with important early Pliocene marsupial remains at Grange Burn, southwest Victoria.Crossref | GoogleScholarGoogle Scholar |

Macphail MK (1999) Palynostratigraphy of the Murray Basin, inland southeastern Australia. Palynology 23, 197–240.
Palynostratigraphy of the Murray Basin, inland southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Maddison WP, Maddison DR (2009) ‘Mesquite: a modular system for evolutionary analysis.’ Available at http://mesquiteproject.org [Verified 6 March 2009].

Markgraf V, D’Antoni HL (1978) ‘Pollen flora of Argentina: modern spore and pollen types of Pteridophyta, Gymnospermae, and Angiospermae.’ (University of Arizona Press: Tucson, AZ)

McIntyre DJ (1963) Pollen morphology of New Zealand species of Myrtaceae. Transactions of the Royal Society of New Zealand 2, 83–107.

McWhae KM (1957) A note on the pollen of Whiteodendron and Kjellbergiodendron (Myrtaceae). Reinwardtia 4, 189–191.

Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T (2009) ‘The CIPRES portals.’ Available at http://www.phylo.org/ [Verified 6 March 2010].

Moar NT (1993) ‘Pollen grains of New Zealand dicotyledonous plants.’ (Manaaki Whenua Press: Lincoln, New Zealand)

Muller J (1968) Palynology of the Pedawan and Plateau sandstone formations (Cretaceous–Eocene) in Sarawak, Malaysia. Micropaleontology 14, 1–37.
Palynology of the Pedawan and Plateau sandstone formations (Cretaceous–Eocene) in Sarawak, Malaysia.Crossref | GoogleScholarGoogle Scholar |

Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54, 2119–2133.

Parnell J (2003) Pollen of Syzygium (Myrtaceae) from SE Asia, especially Thailand. Blumea 48, 303–317.

Patel VC, Skvarla JJ, Raven PH (1984) Pollen characters in relation to the delimitation of Myrtales. Annals of the Missouri Botanical Garden 71, 858–969.
Pollen characters in relation to the delimitation of Myrtales.Crossref | GoogleScholarGoogle Scholar |

Pickett EJ, Newsome JC (1997) Eucalyptus (Myrtaceae) pollen and its potential role in investigations of Holocene environments in southwestern Australia. Review of Palaeobotany and Palynology 98, 187–205.
Eucalyptus (Myrtaceae) pollen and its potential role in investigations of Holocene environments in southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Pike KM (1956) Pollen morphology of Myrtaceae from the south-west Pacific area. Australian Journal of Botany 4, 13–53.
Pollen morphology of Myrtaceae from the south-west Pacific area.Crossref | GoogleScholarGoogle Scholar |

Rae TC (1998) The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14, 221–228.
The logical basis for the use of continuous characters in phylogenetic systematics.Crossref | GoogleScholarGoogle Scholar |

Rambaut A, Drummond AJ (2007) ‘Tracer v1.5.’ Available at http://beast.bio.ed.ac.uk/Tracer [Verified 6 March 2009].

Rutschmann F, Eriksson T, Abu Salim K, Conti E (2007) Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Systematic Biology 56, 591–608.
Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrs7%2FK&md5=6fa687933c3e43409180a1e76fe55f3eCAS |

Sauquet H, Le Thomas A (2003) Pollen diversity and evolution in Myristicaceae (Magnoliales). International Journal of Plant Sciences 164, 613–628.
Pollen diversity and evolution in Myristicaceae (Magnoliales).Crossref | GoogleScholarGoogle Scholar |

Sauquet H, Weston PH, Barker NP, Anderson CL, Cantrill DJ, Savolainen V (2009) Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae). Molecular Phylogenetics and Evolution 51, 31–43.
Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOjtLw%3D&md5=a5216d63944228c2ec86340ee71b7dc2CAS |

Smith AB (1994) ‘Systematics and the fossil record: documenting evolutionary patterns.’ (Blackwell Scientific Publications: Oxford, UK)

Stevens PF (1991) Character states, morphological variation, and phylogenetic analysis: a review. Systematic Botany 16, 553–583.
Character states, morphological variation, and phylogenetic analysis: a review.Crossref | GoogleScholarGoogle Scholar |

Sytsma KJ, Litt A, Zjhra ML, Pires JC, Nepokroeff M, Conti E, Walker J, Wilson PG (2004) Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. International Journal of Plant Sciences 165, S85–S105.
Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFOhurk%3D&md5=febd37ea1afd519a0df8e50ea8ff67adCAS |

Thiele K (1993) The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9, 275–304.
The holy grail of the perfect character: the cladistic treatment of morphometric data.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Macphail M (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species. Review of Palaeobotany and Palynology
Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species.Crossref | GoogleScholarGoogle Scholar | [Published online 20 March 2012].

Thornhill AH, Hope G, Craven LA, Crisp MD (2012a) Pollen morphology of the Myrtaceae. Part 1. Tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae. Australian Journal of Botany 60, 165–199.
Pollen morphology of the Myrtaceae. Part 1. Tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Hope G, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 2. Tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae. Australian Journal of Botany 60, 200–224.
Pollen morphology of the Myrtaceae. Part 2. Tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Wilson PG, Drudge J, Hope G, Craven LA, Crisp MD (2012c) Pollen morphology of the Myrtaceae. Part 3. Tribes Chamelaucieae, Leptospermeae and Lindsayomyrteae. Australian Journal of Botany 60, 225–259.
Pollen morphology of the Myrtaceae. Part 3. Tribes Chamelaucieae, Leptospermeae and Lindsayomyrteae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Hope G, Craven LA, Crisp MD (2012d) Pollen morphology of the Myrtaceae. Part 4. Tribes Kanieae, Myrteae and Tristanieae. Australian Journal of Botany 60, 260–268.
Pollen morphology of the Myrtaceae. Part 4. Tribes Kanieae, Myrteae and Tristanieae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Popple LW, Carter RJ, Ho SYW, Crisp MD (2012e) Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Molecular Phylogenetics and Evolution 63, 15–27.
Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

van der Hammen T (1954) El desarrollo de las flora Colombiana en los periodos geologicos 1. Maestrichtiano hasta Terciario mas inferior. Boletin geologico (Bogota) 2, 49–106.

van Wyk AE, Dedekind I (1985) The genus Eugenia (Myrtaceae) in Southern-Africa: morphology and taxonomic value of pollen. South African Journal of Botany 51, 371–378.

Webster GL, Carpenter KJ (2008) Pollen morphology and systematics of palaeotropical Phyllanthus and related genera of subtribe Phyllanthinae (Euphorbiaceae). Botanical Journal of the Linnean Society 157, 591–608.
Pollen morphology and systematics of palaeotropical Phyllanthus and related genera of subtribe Phyllanthinae (Euphorbiaceae).Crossref | GoogleScholarGoogle Scholar |

Welsh W, Stefanović S, Costea M (2010) Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae). Plant Systematics and Evolution 285, 83–101.
Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae).Crossref | GoogleScholarGoogle Scholar |

Wilson PG (2011) Myrtaceae. In ‘The families and genera of vascular plants. Vol. X. Flowering plants Eudicots: Sapindales, Cucurbitales, Myrtaceae’. (Ed. K Kubitzki) pp. 212–271. (Springer–Verlag: Heidelberg, Germany)

Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |

Zhou MM, Heusser CJ (1996) Late-glacial palynology of the Myrtaceae of southern Chile. Review of Palaeobotany and Palynology 91, 283–315.
Late-glacial palynology of the Myrtaceae of southern Chile.Crossref | GoogleScholarGoogle Scholar |